COS 424: Interacting with Data

Lecturer: David Blei	Lecture $4/3$
Scribe: Jeehyung Lee	

1 Squared bias and variance of estimates

Given data $(x_{1:N}, y_{1:N})$,

MLE $\hat{B} = arg_B(max(log(y_{1:N}|x_{1:N}, B)))$

Suppose we know a true value B of some data. Suppose we sample random data using true value B based on Gaussian distribution. Then, the estimate \hat{B} based on this data is not necessarily B.

Now suppose we observe a new input/output pair (x_o, y_o) . The squared error of the estimate of y_o is,

 $(\hat{B}x_o - Bx_o)^2$

This value indicates how close the prediction of the estimate \hat{B} to that of the true B.

Considering B as a random variable, we can estimate Mean Squared Error of the estimates of y_o (Let $E_D[\hat{B}]$ denote $E[\hat{B}(D)]$, where D is a distribution of data from which \hat{B} is estimated).

$$MSE(\hat{B}x_o) = E_D[(\hat{B}x_o - Bx_o)^2]$$

We can expand this equation to,

 $MSE(\hat{B}x_o) = E_D[(\hat{B}x_o)^2] - 2E_D[\hat{B}x_o]Bx_o + (Bx_o)^2$ (Remember that B and x_o are fixed values here)

We add zero term $(E_D[\hat{B}x_o]^2 - E_D[\hat{B}x_o]^2)$ to this equation,

$$MSE(\hat{B}x_o) = E_D[(\hat{B}x_o)^2] - 2E_D[\hat{B}x_o]Bx_o + (Bx_o)^2 + E_D[\hat{B}x_o]^2 - E_D[\hat{B}x_o]^2$$

Now the equation is equivalent to

$$(E_D[\hat{B}x_o] - Bx_o)^2 + (E[(\hat{B}x_o)^2] - E[\hat{B}x_o]^2)$$

The first term is a "squared bias $(Bias^2(\hat{B}))$ " and the second term is a "variance of estimates $(Var(\hat{B}))$ ".

According to Gauss-Markov Theorem, MLE is the unbiased estimator with the smallest variance. In other words, if \hat{B} is a MLE, the squared bias will be 0 and the variance will be the smallest.

The prediction error, which is defined by the following equation,

$$E_D[E_{y_o}[(\hat{B}x_o - y_o)^2]]$$

is equal to,

 $\delta^2 + Var(\hat{B}) + Bias^2(\hat{B})$

where δ^2 is the variance of data $(y_o \sim N(Bx_o, \delta^2))$.

2 Regularization

The basic idea of regularization is to trade $Var(\hat{B})$ and $Bias^2(\hat{B})$ by placing constraints on \hat{B} . This has 3-fold advantages,

- Encourages smaller and simpler models
- Makes the model robust to overfitting
- Makes the model more interpretable

One way to do this is Ridge Regression - to optimize RSS subject to constraint s on squared sum of coefficients. As s becomes bigger, we have a better chance of reducing error, but suffer a bigger variance.

 \hat{B} of Ridge Regression can be calculated by solving the following equation,

 $\hat{B}^{ridge} = \arg_B(\min(\sum_{i=1}^N \frac{1}{2}(y_n - Bx_n)^2 + \lambda \sum_{i=1}^p B^2))$ (The term λ determines the size of the "Ball" constraining B)

This is a convex problem and can be solved efficiently.

As for the choice of λ , we choose λ from cross-validations to minimize test error - For candidate values of λ (i.e., grid between $0 \sim 1$) and for each fold, calculate \hat{B}^{ridge} and get average error of within-fold samples. We choose λ that minimizes the average error.

3 Bayesian Statistics

Parameter $\theta \sim G_o(\alpha)$

 $y_n \sim F(\theta)$

Posterior $p(\theta|y_{1:N}, \alpha)$

where $G_o(\alpha)$ is a prior distribution and α is called "hyperparameter".

To calculate MLE, Bayesians choose θ to maximize likelihood of $y_{1:N}$. Bayesian estimates give up on bias to reduce variance.