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1 Squared bias and variance of estimates

Given data (x1:N , y1:N ),

MLE B̂ = argB(max(log(y1:N |x1:N , B)))

Suppose we know a true value B of some data. Suppose we sample random data using
true value B based on Gaussian distribution. Then, the estimate B̂ based on this data is
not necessarily B.

Now suppose we observe a new input/output pair (xo, yo). The squared error of the
estimate of yo is,

(B̂xo −Bxo)2

This value indicates how close the prediction of the estimate B̂ to that of the true B.
Considering B̂ as a random variable, we can estimate Mean Squared Error of the esti-

mates of yo (Let ED[B̂] denote E[B̂(D)], where D is a distribution of data from which B̂ is
estimated).

MSE(B̂xo) = ED[(B̂xo −Bxo)2]

We can expand this equation to,

MSE(B̂xo) = ED[(B̂xo)2]− 2ED[B̂xo]Bxo + (Bxo)2

(Remember that B and xo are fixed values here)

We add zero term (ED[B̂xo]2 − ED[B̂xo]2) to this equation,

MSE(B̂xo) = ED[(B̂xo)2]− 2ED[B̂xo]Bxo + (Bxo)2 + ED[B̂xo]2 − ED[B̂xo]2

Now the equation is equivalent to

(ED[B̂xo]−Bxo)2 + (E[(B̂xo)2]− E[B̂xo]2)

The first term is a ”squared bias (Bias2(B̂))” and the second term is a ”variance of
estimates (V ar(B̂))”.

According to Gauss-Markov Theorem, MLE is the unbiased estimator with the smallest
variance. In other words, if B̂ is a MLE, the squared bias will be 0 and the variance will
be the smallest.



The prediction error, which is defined by the following equation,

ED[Eyo [(B̂xo − yo)2]]

is equal to,

δ2 + V ar(B̂) + Bias2(B̂)

where δ2 is the variance of data (yo ∼ N(Bxo, δ
2)).

2 Regularization

The basic idea of regularization is to trade V ar(B̂) and Bias2(B̂) by placing constraints on
B̂. This has 3-fold advantages,

• Encourages smaller and simpler models

• Makes the model robust to overfitting

• Makes the model more interpretable

One way to do this is Ridge Regression - to optimize RSS subject to constraint s on
squared sum of coefficients. As s becomes bigger, we have a better chance of reducing error,
but suffer a bigger variance.

B̂ of Ridge Regression can be calculated by solving the following equation,

B̂ridge = argB(min(
∑N

i=1
1
2(yn −Bxn)2 + λ

∑p
i=1 B2))

(The term λ determines the size of the ”Ball” constraining B)

This is a convex problem and can be solved efficiently.

As for the choice of λ, we choose λ from cross-validations to minimize test error - For
candidate values of λ (i.e, grid between 0 ∼ 1) and for each fold, calculate B̂ridge and get
average error of within-fold samples. We choose λ that minimizes the average error.

3 Bayesian Statistics

Parameter θ ∼ Go(α)

yn ∼ F (θ)

Posterior p(θ|y1:N , α)

where Go(α) is a prior distribution and α is called ”hyperparameter”.

To calculate MLE, Bayesians choose θ to maximize likelihood of y1:N . Bayesian estimates
give up on bias to reduce variance.
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