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1 Squared bias and variance of estimates

Given data (z1.n,%1.N),
MLE B = argg(maz(log(yi.x|z1.n, B)))

Suppose we know a true value B of some data. Suppose we sample random data using
true value B based on Gaussian distribution. Then, the estimate B based on this data is
not necessarily B.

Now suppose we observe a new input/output pair (x,,y,). The squared error of the
estimate of y, is,

(Bxo — Bx,)?

This value in(ilicates how close the prediction of the estimate B to that of the true B.

Considering B as a random variable, we can estimate Mean Squared Error of the esti-
mates of y, (Let Ep[B] denote E[B(D)], where D is a distribution of data from which B is
estimated).

MSE(Bz,) = Ep[(Bx, — Bx,)?]

We can expand this equation to,

MSE(Bz,) = Ep|(Bx,)?| — 2Ep|Bx,| Bz, + (Bz,)?
(Remember that B and x, are fixed values here)

We add zero term (Ep[Bi,]? — Ep|[Bx,)?) to this equation,

MSE(Ba,) = Ep|(Bz,)?| — 2Ep[Bx,) Bz, + (Bx,)? + Ep[Bz,]* — Ep[Bx,)?
Now the equation is equivalent to

(Ep[Bo] — Bxo)® + (E[(Bxo)’] — E[Bz]?)

The first term is a "squared bias (Bias2(B))” and the second term is a ”variance of
estimates (Var(B))”.

According to Gauss-Markov Theorem, MLE is the unbiased estimator with the smallest
variance. In other words, if B is a MLE, the squared bias will be 0 and the variance will
be the smallest.



The prediction error, which is defined by the following equation,

Ep|Ey,[(Bx, — yO)z]]
is equal to,
6% 4+ Var(B) + Bias*(B)

where §2 is the variance of data (y, ~ N(Bw,,§%)).

2 Regularization

The basic idea of regularization is to trade Var(B) and Bias®(B) by placing constraints on
B. This has 3-fold advantages,

e Encourages smaller and simpler models
e Makes the model robust to overfitting

e Makes the model more interpretable

One way to do this is Ridge Regression - to optimize RSS subject to constraint s on
squared sum of coefficients. As s becomes bigger, we have a better chance of reducing error,
but suffer a bigger variance.

B of Ridge Regression can be calculated by solving the following equation,

B¢ = argp (min(S 5(yn — Bra)® + A1 B?)
(The term A determines the size of the ”Ball” constraining B)

This is a convex problem and can be solved efficiently.

As for the choice of A\, we choose A from cross-validations to minimize test error - For
candidate values of \ (i.e, grid between 0 ~ 1) and for each fold, calculate B™%¢ and get
average error of within-fold samples. We choose A that minimizes the average error.

3 Bayesian Statistics
Parameter 0 ~ G,(«)
Yn ~ F(0)
Posterior p(0|y;.n, @)

where G,(«) is a prior distribution and « is called ”hyperparameter”.

To calculate MLE, Bayesians choose 6 to maximize likelihood of y;.y. Bayesian estimates
give up on bias to reduce variance.



