
NOTES FOR COS424, 25 MARCH 2008

NATHAN SAVIR AND MASON SIMON

Abstract. We review the basics of Markov models and hidden Markov mod-

els (HMMs) from last class. We discuss the two types of HMMs, which are

analogous to naive Bayes and mixture models, respectively. We then begin
computations regarding the efficient implementation of the EM algorithm as

it applies to HMMs.

1. Markov Models

Recall from last time: a Markov model is a sequence of variables in which each
one is probabilistically dependent on the previous one(s).

model 1.jpg

Figure 1. sequential dependence of random variables

We can see the following fundamental factorization property of the joint distri-
bution from our model:

p(xt−1, xt, xt+1) = p(xt−1)p(xt|xt−1)p(xt+1|xt).(1.1)

Let’s consider the conditional joint distribution p(xt−1, xt+1|xt). Using the chain
rule and (1.1), we have

p(xt−1, xt+1|xt) =
p(xt−1)p(xt|xt−1)p(xt+1|xt)

p(xt)

=
p(xt−1, xt)p(xt+1|xt)

p(xt)
= p(xt−1|xt)p(xt+1|xt).(1.2)

The two conditionals are independent! In plain English, this can be read as “the
past is independent of the future, given the present.” This is a fundamental as-
sumption of the Markov model.

Date: 26 March 2008.

1

2 NATHAN SAVIR AND MASON SIMON

2. Hidden Markov Models

Recall that the generic HMM is represented by a graphical model like this:

model 2.jpg

Figure 2. HMM

This is fundamentally similar to a mixture model, except that the generating
distribution for the data changes at each iteration and is dependent on the previous
distribution. We see that this model can be used in two ways, the first of which
should be reminiscent of naive Bayes, and the second of which is more like the
mixture model.

(1) In the first approach, we have a set of observed data in which both the zt
and the xt values are known. Thus, we can approximate both p(x|z) and p(zt+1|zt)
directly from the observed data. Then, we can predict the classes of each element
in a new sequence of data using p(z1, . . . zT |xnew1 , . . . , xnewT). Some examples of
applicaitons of this model are data extraction from web pages (where you may be
looking for data in a specific category, like whether it is a job listing) or speech
recognition (such as automated telephone customer service).

In these sorts of situations, the vocabulary of zs is known. We find a transition
matrix and emission probabilities given this data. Then, given a new sequence of
data, we can predict the corresponding sequence of zs using the standard highest
probability method (as in Bayes). Note that in some applications, you may learn
the transition probabilities and the emission probabilities from separate sources. A
good example of this is the speech recognition problem – huge sets of language data
are available for generating an accurate language model, whereas the quantity of
data available for voice recognition is much smaller. So it makes sense to generate
the transition matrix using the language data, and only use the voice data for the
emission probabilities.

NOTES FOR COS424, 25 MARCH 2008 3

(2) In the second approach, the only observed data we have is the sequence of
xs. We don’t have any observations of the z variables at all; they remain hidden.
Obviously, this becomes a clustering problem, and we approach it in the same way
as we approach mixture modeling.

Some terminology is in order now. The HMM of type (1) is a classification model;
it’s the sequential version of naive Bayes. The HMM of type (2) is a clustering
model; it’s the sequential version of mixture modeling. Naive Bayes and mixture
modeling are known as exchangeable models, because you can exchange the data
(change the order) and the model is unchanged; HMMs are sequential models.

3. The EM algorithm

As in our previous models, the important computation is that of p(z1:T |x1:T) :
the probability of each possible sequence of classes, given the data. The method of
estimation will be essentially the same as in the mixture model. We’ll use the EM
algorithm. In literature on HMMs, the EM algorithm is sometimes referred to as
the Baum-Welch algorithm.

Let’s begin with the E step (the prediction step). Consider the probability of a
particular z : p(zt|x1:T). Using Bayes’ rule and the past-future independence, we
have

p(zt|x1:T) =
p(x1:T |zt)p(zt)

p(x1:T)

=
p(x1, . . . , xt, zt)p(xt+1, . . . , xT |zt)

p(x1:T)

=
α(zt)β(zt)
p(x1:T)

(3.1)

The first step is simply an application of Bayes’ rule, but the second step may seem
a bit mysterious. Consider again the graphical representation of the model (see
Figure 3 below).

Observe that the fact that zt is observed here means that not only are all of
the things after zt independent of the things before zt, but xt is independent of
everything. We could put xt in either of the two terms up there; once we know zt,
knowing xt gives us no new information for determining the other zs. Also note
that we’ve defined two important functions:

α(zt) := p(x1, . . . , xt, zt)

β(zt) := p(xt+1, . . . , xT |zt).

From (3.1) it’s easy to see that

p(x1:T) =
k∑

zt=1

α(zt)β(zt),

where k is the number of classes. Also, we see that this equation holds for all times
t = 1, . . . , T ; the sum on the right is independent of the value of t.

4 NATHAN SAVIR AND MASON SIMON

model 3.jpg

Figure 3. ”past is independent of future, given present” illustrated

We see that we have reduced our problem to the computation of the α and β.
Keep in mind that α and β are vectors (of length k) of distributions. For each
possible value of zt, each of those functions is a probability distribution.

A note of caution: zt takes the values 1, 2, . . . , k. These are the classes, NOT
the indices. zt is the class value at a particular time index t = 1, 2, . . . , T . Don’t
mix these up!

Now recall the parameters of the HMM:
A, the transition matrix. aij = p(zt+1 = j|zt = i) for every t.
p(x|z), the emission probabilities.
π, the initial state probabilities.

We’ll continue our computation by considering α. Of course, we can “easily”
(perhaps “straightforwardly”) compute α by summing directly for each value of t
and each value of zt. Seems like this would be a lot of summation, though. It would
be nice to find a more efficient way to compute all of the function values. As it
happens, we will be able to do that. (What follows is not directly transcribed from
the lecture. It’s Nathan’s addition.) It’s a huge and mysterious computation, so in
order to clarify things a bit, let’s discuss some motivation first. Recall that α(zt)
is the joint distribution of x1, . . . , xt, zt. Consider α(zt+1). It would be nice if we
could compute this from the values of α at an earlier time. It seems reasonable that
we should be able to do this from the values of α(zt), because zt+1 only depends

NOTES FOR COS424, 25 MARCH 2008 5

on the things before it, and α(zt) is the joint distribution of a lot of what we know
from before time t + 1. We know that the past is independent of the future given
the present, but all we can do with that to start is split the xt+1 away from the
others. But here’s an idea – if we pretend we know what zt is, then we can split the
x1, . . . , xt away from the zt+1. Just think of zt as the present, zt+1 as the future,
and the xs as the past. This would give us some expression with α(zt) and a few
other things that might not be too bad.

Now, how could we do this rigorously? The rigorous version of “pretending that
we know what zt is” would be introducing zt into the conditional expectation and
summing over it. So this is exactly what we’ll do! This is the only conceptually
difficult part of the following computation. Everything else is either basic alge-
braic manipulation (the chain rule for joint distributions) or the “past independent
of future given present” rule that we’re now familiar with. (We return to notes
transcribed from the lecture.) Here’s the computation:

α(zt+1) = p(x1:t+1, zt+1)

= p(x1, . . . , xt+1|zt+1)p(zt+1)

= p(x1, . . . , xt|zt+1)p(zt+1)p(xt+1|zt+1)

=
k∑

zt=1

p(x1, . . . , xt, zt, zt+1)p(xt+1|zt+1)

=
∑
zt

p(x1, . . . , xt, zt+1|zt)p(zt)p(xt+1|zt+1)

=
∑
zt

p(x1, . . . , xt|zt)p(zt)p(zt+1|zt)p(xt+1|zt+1)

=
∑
zt

p(x1, . . . , xt, zt)︸ ︷︷ ︸
=α(zt)

p(zt+1|zt)︸ ︷︷ ︸
transition

p(xt+1|zt+1)︸ ︷︷ ︸
emission

=
∑
zt

α(zt)azt+1ztp(xt+1|zt+1).(3.2)

Now, we can compute α(z0) from known data: α(z0) = πp(x0|z0). From this, we
inductively get all of the other αs. What’s the complexity of this computation?
In (3.2), we have a sum over k possible values of zt. There are k possible values
of zt+1. We have to do this from t = 1 to T − 1. So the complexity is O(k2T).
You can check for yourself that this is much better than if we compute each of
the α distributions directly! (It’s already kT different values, and the sums are
going to be much bigger.) That’s all for this class. Next time we will do a similar
computation for the β function.

