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1 Boosting

• Easy to come up with rough rules of thumb for classifying data
- e.g., Doesn’t contain ”!!!” then HAM, contains ”mortgage” then SPAM.

• Rules are not great, but better than random

• Boosting converts these rough rules of thumb into an accurate classifier

• a class of ensemble methods

1.1 Sketch of an Boosting algorithm

• devise a weak learner that finds a weak hypothesis

• run on training data

• obtain weak hypothesis (ht)

• reweight examples according to accuracy: Upweight misclassified data points and
downweight correctly classified data points

• repeat T times to get 2nd, 3rd, ... Tth weak hypotheses (h2, h2 . . . hT )

• at end, combine the weak hypthoeses into a strong classifier H.

1.2 The power of Boosting

• Boosting can drive the error down to an arbitrarily small positive number ε, ε > 0.

• That is, we can do as well as random or we can obtain a training error 0.

• Empirically, also does well at test time.

1.3 Illustrating the Boosting process - Toy example

For example, weak classifiers are horizontal and vertical lines. Two classes (+) and (-).
Dt: distribution over the training set.
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1.4 Mathematical Description

We have Data: {xn,yn}; where xn is a document and yn = {-1,1} is a class
Ada.Boost Algorithm (Freund and Schapire, 1997)

• pronounced: Add-da-booost short for adaptive boosting

• Let Dt be a distribution of weights over all data points at iteration t.

• D0(i) = 1
N [- all data are equally likely]

• for t = 1 . . . T

– Run weak learner on the training data weighted by Dt to obtain hypothesis ht
– Reweight the data distribution based on the error rate of the hypothesis ht

• Define εt = PDt(ht(xi) 6= yi), the probability that under the current distribution,
Dt, the predicted class,ht(xi), does not equal the true class, yi. When the weights
are uniform this probability is simply # of misclassifications

# total data points . For non uniform weighting,
this probability is sum of the weighted distribution over those data points that were
misclassified.

• α = 1
2 log(1−εt

εt
), note that αt is big because ε ∈ {0, 0.5}

• The update step in the algorithm takes the following form:

Dt+1(i) = 1
Zt
Dt(i) ∗

{
εαt if ht(xi) 6= yi

ε−αt if ht(xi) = yi

• Zt is a constant for R.H.S. to sum to 1:
∑N

i=1Dt+1(i) = 1.

• After T rounds, the predicted class (H(x))is a weighted combination of the predicted
classes of each weak hypothesis. This known as a weighted majority vote.

• H(x) = sign

(
T∑
t=1

αtht(xi)

)

1.5 Example on text data

usenet newsgroups - discussion forum from beginning of the internet. Benchmark data set
in text classification. Goal: predict the forum of a given message.

Binary classification - we consider 1000 × 1000 matrix, M. mij is # jth word occurs
in ith document. Adaboost w/ weak learners being presence of a single word. Classify
articles from alt.atheism vs. NOT from alt.atheism. A plot of the training accuracy and
test accuracy of the classifier using 0 − 100 rounds. As the number of rounds increased
to 100, the training accuracy went from 0.92 to 1.0 (perfect classification). The training
accuracy performed as well about 0.95.

There were several Important things to take from this example:

• The training accuracy almost always increases with more rounds.

• The test accuracy doesn’t necessarily increase with more rounds.

• Choosing the number of rounds is an important part of Boosting.
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2 Theoretical Error: how well does Boosting do?

One of the strong points of the Boosting algorithm is that one can prove an upper limit of
the training error under the assumptions of the weak hypothesis (”rules of thumb”).

Theorem 2.1. An Upper Bound on the Training Error:
The training error of the final, combined classifier H(x) is at most exp{−2 ∗

∑T
t=1 γ

2
t },

where γt = 1
2 − εt.

Proof. The proof of this theorem requires three steps:

1. Show that

DT+1(i) =
1
N

−yiF (xi)∏
t Zt

where, F (xi) =
∑
t

αtht(xi)

2. Show that the training error of the final classifier H is at most

T∏
t=1

Zt

3. Combine step 1 and step 2 and rewrite Zt to show

error ≤ exp{−2
T∑
t=1

γ2
t }

where γt = 1
2 − εt.

1. Proof. Show that DT+1(i) = 1
N
−yiF (xi)Q

t Zt

Recall that our update step took the following form:

Dt+1(i) =
1
Zt
Dt(i) ∗

{
εαt if ht(xi) 6= yi

ε−αt if ht(xi) = yi

where ht(xi) and yi ∈ {−1, 1}. We thus can recognize that

ht(xi) ∗ yi =

{
1 if ht(xi) = yi

−1 if ht(xi) 6= yi

Recognizing this equivalency allows us substitute the product ht(xi)yi into our original
update equation:

Dt+1 =
Dt(i) · exp{−αtht(xi)yi}

Zt
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Above we defined D0(i) = 1
N , ∀ i = {1, · · · , N} so to equally weight each data point.

Using our definition for D0(i) we can recursively apply the update step so to arrive
at a formula for DT+1:

DT+1(i) = D0(i) · exp{−α1h1(xi)yi}
Z1︸ ︷︷ ︸

D1(i)

· · · exp{−αThT (xi)yi}
ZT

We can define F (xi) =
∑T

t=1 αtht(xi), substitute in D0(i) = 1
N and utilize the face

that exponents of the same base sum when multiplying in order to simply our formula:

DT+1(i) =
1
N

exp{−yi
∑T

t=1 αtht(xi)}∏T
t=1 Zt

=
1
N

exp{−yiF (xi)}∏T
t=1 Zt

(1)

2. Proof. Show that the training error of the final classifier H is at most
∏T
t=1 Zt.

Let us define the fractional training error as the number of incorrect classifications
divided by the total number of training data points:

error =
1
N

N∑
i=1

1[F (xi)yi ≤ 0]

Remember that F (xi) is the predicted class of xI using the ”weighted majority vote”
of all the individual weak hypotheses ht(xi). Therefore 1[F (xi)yi ≤ 0] is an indicator
variable that xi was misclassified. We can easily write an upper bound on this error:

error ≤ 1
N

N∑
i=1

exp{−yiF (xi)} (2)

This bound comes from the property of the exponential. Let a = yiF (xi) and consider
the two cases:

a ≤ 0 −→e−a ≥ 1 = 1[a ≤ 0]
a > 0 −→1[a ≤ 0] = 0 < e−a

Thus in both cases, for an individual xi, the indicator variable is upper-bounded and
thus the sum is also upper-bounded.

If we rewrite equation 1 as:

DT+1(i)
T∏
t=1

Zt =
1
N

exp{−yiF (xi)} (3)

If substitute this into equation 2 we can rewrite the upper bound as:

error ≤
N∑
i=1

(
DT+1(i)

T∏
t=1

Zt

)

≤
T∏
t=1

Zt ·
N∑
i=1

DT+1(i)︸ ︷︷ ︸
by definition normalized to 1
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Through out definition of Zt, we normalized Dt+1 to sum to one.

Therefore, we have proved an upper bound on the test error of final classifier using T
weak hypotheses:

error ≤
T∏
t=1

Zt (4)

3. Proof. Let us examine how we can use the definition of Zt as a normalization constant
to decompose it into two terms. Recall that Zt is defined such that

∑N
i=1Dt+1(i) = 1,

where Dt+1 was defined as:

Dt+1(i) =
1
Zt
Dt(i) ∗

{
εαt if ht(xi) 6= yi

ε−αt if ht(xi) = yi
(5)

Therefore, in order for Dt+1 to sum to one, Zt must be defined as:

Zt =
∑

i:ht(xi)=yi

Dt(i)eαt

︸ ︷︷ ︸
correct classification

+
∑

i:ht(xi)6=yi

Dt(i)e−αt

︸ ︷︷ ︸
incorrect classification

(6)

Notice that the exponential is independent of i and can therefore be removed from
the sum:

Zt = eαt
∑

i:ht(xi)=yi

Dt(i)︸ ︷︷ ︸
=(1−εt)weighted accuracy

+e−αt
∑

i:ht(xi)6=yi

Dt(i)︸ ︷︷ ︸
=εt weighted error

(7)

where ε = PDt(ht(xi) 6= yi): the probability under the current weights (distribution)
that the predicted class is incorrect. If we think of Dt as a probability distribution,
then the summation of all the incorrect classifications is exactly εt.

Zt = eαt(1− εt) + e−αt(εt) (8)

The definition of αt = 1
2 log

(
1−εt
εt

)
was chosen to minimize Zt and therefore minimize

the training error in the final classifier. Using this definition of αt, the error can
written more succinctly as:

Zt = 2
√
εt(1− εt)

=
√

1− 4γ2
t , where γt =

1
2
− εt

Using the property that 1 +x ≤ ex, where x = −2γ2
t , we can further upper bound the

error:
Zt ≤ e−2γ2

t (9)
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4. Proof. By combining equations 4 and 9 from steps 2 and 3 we can arrive at the final
upper bound of the classifier H(x) using T weak hypotheses:

error ≤ exp{−2
T∑
t=1

γ2
t } (10)

where γt = 1
2 − εt.
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