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1 Naive Bayes

In the last lecture, we discussed Naive Bayes, and we were left with this equation:

P (c, w1:N |π, θ) = P (c|π)
N∏

n=1

P (wn|θc) (1)

and the following questions:

1. What’s weird about this?
This seems weird because it does not take into account the order of the words. It
completely ignores the structure of the text (ie. bag of words).

2. What is the effect of (1)?
The effect this has is that seeing one word many times increases its influence to the
classifier. Because of this, spam e-mails that have non-spam words in them reduces
the chance of the e-mail being classified as spam.

3. Can we adapt NB to other kinds of data?
Yes, we can generalize this into a generic model. Naive Bayes only requires that you
have a set of data with corresponding categories. It can then predict which category
future data belongs to.

For other kinds of data,

• π̂ ∝ # instances of each class

• θ̂c: MLE of the data restricted to class c

1.1 General Probabalistic Classifier

The generic version of the classifier is as follows:

p(x, c|π, θ) = p(c|π)p(x|θc) (2)

This allows us to predict the category of given data.

Suppose we have the data set {xd, cd}D
d=1. In the previous example, xd was the e-mail,

and cd was the category. For the generic model, xd is the data, and cd is still the category.

By using the chain rule, we get:

p(xd, cd|π, θ) = p(cd|π)p(xd|cd, θc) (3)

By computing the MLE for each partition (category), we use probability as a language to
express uncertainty.



2 Support Vector Machines (SVM)

2.1 Introduction

To introduce SVMs, we will first discuss the problem of placing a hyperplane in a linearly
separable set of points that belong to two classes. The two classes are plus (+) and minus
(-), and the classifier draws a line to separate the two classes. Below is a figure showing
a set of points that belong to a class, and a line equidistant from the centers of the two
clusters. This is one way to separate the clusters, but it becomes more complicated in other

situations. Consider the two clusters in the figure below. If all you care about is that the
test points are separated, the three lines, A, B, and C are just three of the many valid
lines. However, if you assume that the test points are in their locations for a reason, and

A

B

C

given that our goal is the classify new points, we can do better. Instead of choosing an
arbitrary line, we will maximize the margin which is the minimum distance over all data
to the boundary. The line we draw using this method is called the boundary, and is a type
of optimal hyperplane. Note that the distance to the boundary from the nearest (+) and
nearest (-) is equal, because the margin is maximized. In this figure, we show the margin
from the nearest (+) and nearest (-).
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Margins

2.2 Formalization

To formalize placing the hyperplane, we will first define our data as {(xn, yn)}N
n=1 where

xn ∈ REALSp and yn ∈ −1, 1.

A more formal definition of the margin, C, is

C = min
n

ynxT
nβ

‖β‖

Problem: Maximize C s.t. yix
T
i β

‖β‖ ≥ C. This will find a line such that the distance to
every point is greater than C and which mazimizes C.

As a review of linear algebra, the figure below shows f(x) = βT X which goes through
the origin. Note that if the optimal hyperplane does not go through the origin, the data
can be shifted so that it does. The distance from the point x0 to the hyperplane is βT x0

‖β‖ .
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Problem: ‖β‖ is free, so this is not a one-to-one relationship.
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Solution: Set C = 1
‖β‖

New Optimization: maxβ
1

‖β‖ s.t. yix
T
i β ≥ 1

This is the same as minβ
1
2‖β‖

2 s.t. yix
T
i β ≥ 1; i = 1, . . . , N

We do this because we can use the easy method for solving quadratic equations to solve our
problem.

2.3 Optimization

We can use the Karush-Kuhn-Tucker (KKT) conditions, a generalization of Lagrange Mul-
tipliers, to maximize the margin. Let us examine the Lagrange Multiplier:

Lp =
1
2
‖β‖2 −

N∑
i=1

αi(yix
T
i β − 1) (4)

We then take the derivative of this with respect to βd:

∂Lp

∂βd
= βd −

N∑
i=1

αiyixid (5)

and set the derivative to 0 which results in the formula for finding the optimal coefficient:

β =
∑
i=1

Nαiyixid (6)

This is the first KKT condition. We then take the duality function and we get (with some
algebra not shown here):

LD =
N∑

i=1

αi −
1
2

N∑
i=1

sumN
j=1αiαjyiyjx

T
i xj (7)

The second KKT condition is to maximize LD such that α ≥ 0.
The third KKT condition is αi(yix

T
i β − 1) = 0. If αi ≥ 0 then the second term has to be

0, so xi lies on the margin. If yix
T
i β − 1 = 0 then yix

T
i β

‖β‖ = 1
‖β‖ .

2.4 Meaning Behind the Name

The effect of the αis is that the only vectors that count are those which lie on the margin
because αi is 0 if xi is not at the margin. These vectors that count are called the support
vectors. Therefore, our intuition turns into formalization — only points at the margin
matter.
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