
COS 424: Interacting with Data

Lecturer: David Blei Lecture #4
Scribes: Wei Ho, Michael Ye February 14, 2008

1 Maximum likelihood estimation

1.1 MLE of a Bernoulli random variable (coin flips)

Given N flips of the coin, the MLE of the bias of the coin is

π̂ =
number of heads

N
(1)

One of the reasons that we like to use MLE is because it is consistent. In the example
above, as the number of flipped coins N approaches infinity, our the MLE of the bias π̂
approaches the true bias π∗, as we can see from the graph below.

1.2 MLE of a Gaussian random variable

The parameters of a Gaussian distribution are the mean (µ) and variance (σ2). Given ob-
servations x1, . . . , xN , the likelihood of those observations for a certain µ and σ2 (assuming
that the observations came from a Gaussian distribution) is

p(x1, . . . , xN |µ, σ2) =
N∏

n=1

1√
2πσ

exp

{
−(xn − µ)2

2σ2

}
(2)

and the log likelihood is

L(µ, σ) = −1
2
N log(2πσ2)−

N∑
n=1

(xn − µ)2

2σ2
(3)

We can then find the values of µ and σ2 that maximize the log likelihood by taking deriva-
tive with respect to the desired variable and solving the equation obtained. By doing so,
we find that the MLE of the mean is

µ̂ =
1
N

N∑
n=1

xn (4)

and the MLE of the variance is

σ̂2 =
1
N

N∑
n=1

(xn − µ̂)2 (5)



1.3 Gaussian MLE case study

In the graph above, we have plotted the annual presidential approval ratings along with
the Gaussian distribution fitted to the sample mean and variance. However, there are
three main problems in using a Gaussian model to analyze this data. First, the approval
ratings are restricted between 0 and 100, while the Gaussian density function is over all
real numbers. Secondly, simply looking at the approval ratings as separate data points
ignore the sequential nature of the data. Lastly, using the Gaussian distribution assumes
that the data points are independent and identically distributed, when in fact we need to
take into account of the fact that the term of a presidency is four or eight years, so there
are years when the ratings are correlated. All models are merely cartoons of the data that
we’re analyzing, and it’s hard to find a model that describe all the data. As the statistician
George Box once said, “All models are wrong, but some models are useful.”

2 Naive Bayes

2.1 Classification

Classification algorithms work on labeled training data. A learning algorithm takes the
data produces a classifier, which is a function that takes in new unlabeled test examples
and outputs predictions about the labels of those test examples based on the patterns in
the training data. An example would be spam classification, where the data are e-mails and
the labels are whether the e-mails are spam or not (also called ham).

2.1.1 Binary text classification

In binary text classification, we are given documents and their classes {wd,1:N , cd}, where
wd,1:N are the N words in document d, and cd is the class of the document. For example,
suppose the documents are e-mails; then the categories are whether the e-mail is spam or
ham. Our goal is to build a classifier that can predict the class of a new document. To do
so, we would divide the data into a training set and testing set. The purpose of holding
out a portion of the data as testing set is to allow for cross validation. After all, it would
be cheating if we were to both train and test our classifier using the same data set. Thus,
we use the labeled testing set that has not been seen by the classifier during training to
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evaluate the classifier. One good evaluation metric is accuracy, which is defined as

# correctly predicted labels in the test set
# of instances in the test set

(6)

2.2 Naive Bayes model

The naive Bayes model defines a joint distribution over words and classes–that is, the prob-
ability that a sequence of words belongs to some class c.

p(c, w1:N |π, θ) = p(c|π)
N∏

n=1

p(wn|θc) (7)

π is the probability distribution over the classes (in this case, the probability of seeing spam
e-mails and of seeing ham e-mails). It’s basically a discrete probability distribution over
the classes that sums to 1. θc is the class conditional probability distribution–that is, given
a certain class, the probability distribution of the words in your vocabulary. Each class has
a probability for each word in the vocabulary (in this case, there is a set of probabilities for
the spam class and one for the ham class).
Given a new test example, we can classify it using the model by calculating the conditional
probability of the classes given the words in the e-mail p(c | wn) and see which class is
most likely. There is an implicit independence assumption behind the model. Since we’re
multiplying the p(wn | θc) terms together, it is assumed that the words in a document are
conditionally independent given the class.

2.3 Class prediction with naive Bayes

We classify using the posterior distribution of the classes given the words, which is propor-
tional to the joint distribution since P (X|Y ) = P(X, Y)/P(Y) ∝ P(X, Y). The posterior
distribution is

p(c|w1:N , π, θ) ∝ p(c|π)
N∏

n=1

p(wn|θc) (8)

Note that we don’t need a normalizing constant because we only care about which proba-
bility is bigger. The classifier assigns the e-mail to the class which has highest probability.

2.4 Fitting a naive Bayes model with maximum likelihood

We find the parameters in the posterior distribution used in class prediction by learning
on the labeled training data (in this case, the ham and spam e-mails). We use the maxi-
mum likelihood method method in finding parameters that maximize the likelihood of the
observed data set. Given data {wd,1:N , cd}Dd=1, the likelihood under a certain model with
parameters (θ1:C , π) is

p(D|θ1:C , π) =
D∏

d=1

(
p(cd|π)

N∏
n=1

p(wn|θcd
)

)
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=
D∏

d=1

C∏
c=1

(
πc

N∏
n=1

V∏
v=1

θ
1(wd,n=v)
c,v

)1(cd=c)

which is the product over each email (D), each category (C), each word in the e-mail (N),
and each word in the vocabulary (V ). The 1(cd = c) term serves to filter out e-mails that
are not under the specific category, and the 1(wd,n = v) term serves to filter out the words in
the vocabulary that don’t appear in the e-mail. Then, taking the logarithm of each side gives

L(π, θ1:C ;D) =
∑D

d=1

∑C
c=1 1(cd = c) log πc +∑D

d=1

∑C
c=1

∑N
n=1

∑V
v=1 1(cd = c)1(wd,n = v) log θc,v

and since the logarithm is a monotonic function, maximizing the log likelihood is the same
as maximizing the likelihood of the data. Taking the log allows you to decompose the like-
lihood into the two separate parts of your model–one term contains only π, and the other
term contains only θc,v. Thus, taking the derivative with respect to one of the parameters
eliminates the other one. To maximize the values of π and θc,v, take the derivative with
respect to each and solve for zero. This leads to the maximum likelihood estimates:

π̂c =
nc

D
(9)

and

θ̂c,v =
nc,v∑
v′ nc,v′

(10)

where nc is the number of times you see class c and nc,v is the number of times you see
word v in class c.

2.5 Full procedure

So, we have a general outline of how to build and use our model as follows:

• Estimate the model from the training set.

• Predict the class of each test example.

• Compute the accuracy.

2.6 Naive Bayes case study

We’ll consider an example of using the naive Bayes model to do spam filtering. The e-mail
data set comes from Enron’s subpoenaed e-mails. The training set size is 10,000 e-mails (all
labeled as spam or ham) and the test set size is 1,000 e-mails. Preprocessing has removed
common words such as “the” from data set. In the graph below, the x-axis represents
training size and the y-axis represents accuracy. Note the sensitivity of model performance
to training data size. Test accuracy starts off bad, but gets better as training size increases
and converges at around 70% accuracy. On the other hand, the training accuracy starts off
very high and then drops off. This is due to overfitting, since when you’re only training on
a few e-mails, the word distribution can perfectly describe the training e-mails.
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2.7 Smoothing

However, suppose in the above case study, we see a rare word like “peanut” appear in one
spam e-mail and none of the ham e-mails. In that case, θspam,peanut will be some small
value, but θham,peanut will be 0. Since the probabilities are multiplied together, this leads
to the problem that any e-mail containing the word “peanut” will never be classified as
ham. This is clearly a ludicrous conclusion. To resolve that, we use smoothing to make the
probability distribution more reasonable by adding some number λ to the per-word class
counts. The result is that all words will have non-zero probabilities, while the more frequent
words have slighly decreased probability, leading to a smoother overall distribution. Thus,
the new equation is

θ̂c,w =
nc,w + λ∑

w′ nc,w′ + V λ
(11)

When λ = 1, we call it Laplace smoothing. When λ = 0.5, we call it Jeffrey’s smoothing.

The x-axis is λ and the y-axis is the accuracy. We can see that just adding a little
bit of smoothing results in a huge increase in accuracy. It seems that the problem of
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misclassification based on the appearances of rare words is fairly significant.

2.8 Questions about naive Bayes

This model assumes that the future looks like the past - that is, the test cases come from the
same distribution as the training cases. What other assumptions are made? What effect
do the assumptions have on this classifier? What is strange about the NB model of text?
Can you adapt NB to different data, e.g., vectors of reals? We will address these questions
next time.
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