
Lecture 2: Probability and Statistics

February 13, 2008

2/7/08

Scribe: Jonathan “JP” Paranada

1 What is Probability?

1.1 Definition of Probability and Random Variables

Probability is the study of random variables, (a r .v. being any probabilistic
outcome). Some examples of r.v.’s include:

• A coin toss. Assuming a fair coin, this is a completely random event.

• The number of visitors to a certain store in one day. This is not exactly
random - if we knew at the beginning of the day how many people wanted
to go to the store, it would not be a r.v. But since this information is
unknown, this is a probabilistic outcome.

• The high temperature on 2/7/2013. Again, this is information we do not
know.

• The high temperature on 3/4/1905. Even though we could look this in-
formation up, it is still probabilistic.

1.2 Sample Space

R.v.’s take up values in a sample space. This sample space can be discrete or
continuous, and finite or infinite. For example:

• A coin flip has sample space {h, t}. This is discrete and finite.

• The number of visitors to a store has the sample space {0, 1, ...,∞}. This
is infinite and discrete.

• A temperature at a certain time has the sample space <. This is infinite
and continuous.

The values in a sample space are called atoms.
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2 Notation

• A random variable is denoted by a capital letter: X.

• The realization of a r.v. is lower case: x.

3 Discrete Distribution

• A discrete distribution assigns a probability p to every atom in the space.
For example, an unfair coin could have p(X=h) = 0.7, p(X=t) = 0.3.

• The probabilities must sum to one, i.e.
∑

x p(X = x) = 1.

4 Events

• Consider a space of atoms, which we can represent with a box. Then an
event is a subset of these atoms.

• The probability of an event is the sum of atomic probabilities in that
subset, i.e.

∑
x∈a p(X = x) = p(a).

5 Joint Distributions

• Typically, we are interested in collections of r.v.’s (e.g. visitors in a store
every day).

A joint distribution is the distribution over a configuration of all r.v.’s in an
ensemble. The joint probability is the probability that, for N events, those N
events will occur together.

• For example: p(h, h, h, h) = .0625, p(t, h, h, h) = .0625, ..., p(t, t, t, t)
= .0625

We read the joint probability p(X = x, Y = y) as “the probability of x and y”.

6 Conditional Distributions

A conditional distribution is a distribution of a r.v. given some evidence/prior
knowledge. This is denoted p(X = x | Y = y) (read: “the probability of x given
y”). For example:

p(David Blei listens to Steely Dan) = 0.5
p(Dave listens to S.D. | Toni is home) = 0.1
p(Dave listens to S.D. | Toni is not home) = 0.7
Note that there is one distribution per value of y. In each distribution, all

probabilities p(X = x) must sum to one. That is,
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∑
x p(X = x | Y = y) = 1 but∑
y p(X = x | Y = y) 6= 1 necessarily.

We define the conditional probability in this way:

p(X = x | Y = y) =
p(X = x, Y = y)

p(Y = y)

where p(Y=y) > 0.

7 The Chain Rule

p(X,Y ) =
p(X, Y )p(Y )

p(Y )
= p(X | Y )p(Y )

The chain rule gives us a relation between a joint distribution and a condi-
tional distribution. It can also be generalized as:

p(X1, ..., XN ) = p(X1)
N∏

n=2

p(Xn | X1, ..., Xn−1)

8 Marginalization

Given a set of r.v.’s, we are often interested in a subset of them. That is, we fix
some variables and let others vary. This can be expressed as:

p(X) =
∑

y

∑
z

p(X, y, z)

Here we sum over fixed y and z while X is unknown.

9 Bayes’ Rule

Bayes’ rule gives us a relation between a conditional distribution and the “re-
verse” conditional distribution, i.e. a relationship between p(X|Y) and p(Y|X).

p(Y | X) =
p(X | Y )p(Y )∑

y p(X | Y = y)p(Y = y)

The denominator is p(X), so we can alternately write:

p(Y | X) =
p(X | Y )p(Y )

p(X)

To derive Bayes’ rule, note that the chain rule implies the latter equation
(since p(X, Y) = p(X|Y)p(Y) = p(Y|X)p(X)), and marginalizing out y in the
denominator combined with the definition of conditional probability yields the
former equation.
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10 Independence

10.1 Definition

R.v.’s are independent (notation: ⊥, but with two vertical lines) if knowing one
doesn’t give us any information about the other(s). That is, p(X|Y = y) = p(X)
for all y.

• This means that the joint factorizes as the product of the marginals: p(X,
Y) = p(X|Y)p(Y) = p(X)p(Y).

Examples of r.v.’s that are not independent include:

• Whether it rains and whether you go to the beach

• A person’s height and a person’s sex

Examples of r.v.’s that are independent include:

• The result of rolling two dice

• Whether it rains tomorrow and who the next U.S. president is

10.2 Conditional Independence and the Two Coins Exam-
ple

Say we have two coins, one fair and one unfair, with p(C1 = H) = .5, p(C2 =
H) = .7. We will

1. Choose one coin at random, i.e. pick some z ∈ {1, 2}that determines our
choice of coin Cz.

2. Flip Cztwice to get two results X, Y.

If we knew z, then X and Y would be independent (each with probabilities
determined by the coin we had chosen). But say we did not know z and the
first coin flip was heads. Then the second flip is more likely to be heads. Thus
X and Y are not independent.

Formally, we can state that X and Y are conditionally independent if, when
given information z, they become independent. That is, p(Y|X, Z = z) = p(Y|Z
= z).

This also implies that p(Y, X|Z = z) = p(Y|Z=z)p(X|Z=z) (since the two
are independent given z, the joint factorizes).
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