
Mixture Models and Regression

COS424: Assignment # 3

Due : Wednesday, April 16, 2008

Written Exercises

Mixtures of Gaussians

Consider a mixture of Gaussians model defined by K means µ1, . . . , µK , variance σ2, and propor-
tions π = 〈π1, . . . , πK〉. In such a model, each (real-valued) Xn is generated as follows: First, one
of the mixture components Zn ∈ {1, . . . , K} is chosen at random according to π (so that Zn = z
with probability πz). Then, given that Zn = z, Xn is chosen according to a Gaussian distribution
with mean µz and variance σ2. Note that only Xn is visible; Zn is hidden. We assume that σ > 0 is
known and fixed.

a. Given data X1 : N , describe in detail the EM algorithm for estimating µ1, . . . , µK and π.

b. Argue that as σ2 → 0, this algorithm approaches the K-means algorithm.

c. Argue directly that as σ2 → 0, the EM objective approaches the K-means objective.

Regularized Regression

As is usual for linear regression, suppose we are given training data (x1, y1), . . . , (xm, ym) where
yi ∈ R and xi ∈ Rn (with components xij). In this problem, we seek linear models of the form
f̂(x) = w0 + w · x where w0 is the scalar intercept term, and w = 〈w1, . . . , wn〉 is a (column)
vector of weights over the n inputs. Consider the problem in ridge regression of minimizing

m∑
i=1

(w0 + w · xi − yi)
2 + λ ‖w‖2

2 . (1)

Here, as in Hastie et al. (but unlike in class), we include an explicit intercept term w0, but omit this
term from the regression penalty.
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a. Suppose for this part only that
∑m

i=1 xij = 0 for all j. Let X be the m×n matrix of all inputs
in which the i-th row is equal to (the transpose of) xi, and let y be the (column) vector whose
i-th entry is yi. Show that the solution of (1) is given by

ŵ0 =
1

m

m∑
i=1

yi

ŵ = (X>X + λI)−1X>y

where I is the n× n identity matrix.

b. Returning to the general case (in which the input vectors do not sum to zero), let

aj =
1

m

m∑
i=1

xij

and define x′i by x′ij = xij−aj . Note that, after centering in this fashion, the new input vectors
sum to zero so that the technique in the last part can be applied. Show that minimizing (1) is
equivalent to minimizing

m∑
i=1

(w′
0 + w′ · x′i − yi)

2 + λ ‖w′‖2
2 . (2)

In other words, if ŵ0, ŵ is the solution that minimizes (1), and ŵ′
0, ŵ

′ is the solution that
minimizes (2), show that ŵ0 + ŵ ·x = ŵ′

0 + ŵ′ ·x′ for any x and its transform x′. Moreover,
given a solution ŵ′

0, ŵ
′ to (2), show explicitly how to transform it directly into a solution

ŵ0, ŵ to (1).

c. Suppose that the inputs are both centered and scaled. In other words, suppose we instead
define x′i by x′ij = (xij −aj)/sj for some constants sj . Show that the minimization problems
(1) and (2) need no longer be equivalent (in the sense described above). Show nevertheless
how a solution ŵ′

0, ŵ
′ to (2) can be transformed back into ŵ0, ŵ, not necessarily a solution

to (1), but for which ŵ0 + ŵ · x = ŵ′
0 + ŵ′ · x′ for any x and its transform x′.

Programming Exercises

Mixtures of Multinomials

In this problem, you will implement parameter estimation using expectation-maximization for a
mixture of multinomial distributions.

This model will take a fixed number of clusters as input, and find cluster proportions and per-cluster
multinomial distributions. Given a model, in the E-step, compute the posterior cluster distribution
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for each data point. In the M-step, compute maximum likelihood estimates using expected counts,
where the expectation is taken with respect to the distributions computed in the E-step.

Make sure that the expected complete log likelihood goes up at each step, and declare convergence
when the relative change in this objective is smaller than 0.01%.

Implementation tips and tricks:

• In the E-step, to prevent underflow, compute the joint distribution and normalization in log
space. Then exponentiate. In more detail, if w1:N are the words in a document and Θ are the
model parameters, then the log posterior is

log p(z = k |w1:N , Θ) = log p(z = k |Θ)+
N∑

n=1

log p(w | z = k, Θ)−log
K∑

i=1

p(z = i, w1:N |Θ)

Note that the first two terms are log p(z = i, w1:N |Θ) for each i. To compute the log normal-
izer, and staying in log-space, we have provided a useful function that computes log(a + b)
from log a and log b.

• We have tried to arrange things so that log 0 does not come up. However, in case it does,
we suggest implementing a function called safe.log that returns log if the argument is
non-zero and returns −100000 if the argument is 0.

• Initialize the kth cluster by choosing a document at random dk, and setting the cluster to be:

βk ∝ ~wdk
+ ~ε + 10

where note that ~wdk
is the vector of counts for the dkth document and ~ε is a vector of random

values between 0 and 1.

Initialize the cluster proportions π to be uniform, i.e., πi = 1/K at the beginning of EM.

We have provided two discrete data sets on which to implement this mixture model and fold as-
signments for each data point. These data sets are in the files corp1.Rdat and corp2.Rdat.
Each one contains objects corp and vocab.

a. For a fixed value of K and one of the data sets, plot the expected complete log likelihood as
a function of iteration.

b. Just for kicks, start out each mixture component to the uniform distribution. Note that this is
a bad idea. What happens? Why?

c. For a fixed value of K and for each data set, make a table of the top 15 terms from each clus-
ter distribution and indicate their probabilities. What kinds of regularities have the models
captured in the data? What kinds of data do you think these corpora are?
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d. For k ∈ {2, 5, 10, 20, 30}, compute the held-out perplexity. Perplexity is a quantity used in
the field of language modeling, which measures how well a model has captured the underly-
ing distribution of language. For a particular document w1:N , the perplexity is

perplexity(w1:N) = exp

{
− log2 p(w1:N |Θ)

N

}
In this question, you will compute the average perplexity of the documents in the data set
as a function of the number of clusters. For each data set, create folds with the following
command

folds <- sample(rep(1:5, length=nrows))

Note that nrows is the number of rows in the corpus.

For each fold, fit a model on the out-of-fold data. Then, with this model, compute the per-
plexities of the in-fold documents.

Note that this will yield a perplexity value for each document in the collection. Further note
that the dth document’s perplexity is computed from a model that was not trained on a data
set that contains the dth docment. The average perplexity is the mean of these per-document
perplexities.

e. (Extra credit.) Collect a continuous data set. Implement the mixture of Gaussians model and
plot a number of visualizations and analyses of your data with it.
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