
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 9, 2008 8:45:36 AM

Tries

References:
 Algorithms in Java, Chapter 15
 http://www.cs.princeton.edu/algs4/62trie

‣ tries
‣ TSTs
‣ applications

Review: summary of the performance of symbol-table implementations

Frequency of operations.

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with radix sorting.

2

implementation
typical case

ordered
iteration?

operations
on keys

search insert delete

BST 1.39 lg N 1.39 lg N ? yes compareTo()

randomized BST 1.39 lg N 1.39 lg N 1.39 lg N yes compareTo()

red-black tree lg N lg N lg N yes compareTo()

hashing 1 † 1 † 1 † no equals()
hashcode()

† assumes random hash code

Digital keys (review)

Digital key. Sequence of digits over fixed alphabet.
Radix. Number of digits in alphabet.

Applications.

• DNA: sequence of a, c, g, t.

• IPv6 address: sequence of 128 bits.

• English words: sequence of lowercase letters.

• Protein: sequence of amino acids A, C, ..., Y.

• Credit card number: sequence of 16 decimal digits.

• International words: sequence of Unicode characters.

• Library call numbers: sequence of letters, numbers, periods.

This lecture. String of ASCII characters.

3

String set. Collection of distinct strings.

Remark. Same idea extends to StringST.
4

String set API

 StringSET set = new StringSET();
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (!set.contains(key))
 {
 set.add(key);
 StdOut.println(key);
 }
 }

 public class StringSET

StringSET() create an empty set of strings

void add(String key) add a string to the set

boolean contains(String key) is key in the set?

dedup client

5

String set implementations cost summary

Challenge. Efficient performance for long keys (large L).

Parameters

• N = number of strings.
• L = length of string.
• C = number of characters in input.
• R = radix.

 * only reads in data

file size words distinct

moby.txt 1.2 MB 210 K 32 K

actors.txt 82 MB 11.4 M 900 K

typical case dedup

implementation search hit insert space moby.txt actors.txt

input * L L L 0.26 15.1

red-black L + log N log N C 1.40 97.4

hashing L L C 0.76 40.6

6

‣ tries
‣ TSTs
‣ applications

Tries. [from retrieval, but pronounced "try"]
 Store characters in internal nodes, not keys.
 Store records in external nodes.
 Use the characters of the key to guide the search.

Ex. sells sea shells by the sea

7

Tries

by

sea

sells

shells

the

Tries. [from retrieval, but pronounced "try"]
 Store characters in internal nodes, not keys.
 Store records in external nodes.
 Use the characters of the key to guide the search.

Ex. sells sea shells by the sea shore

8

Tries

by

sea

sells

shells

the

shore

Q. How to handle case when one key is a prefix of another?
A1. Append sentinel character '\0' to every key so it never happens.
A2. Store extra bit to denote which nodes correspond to keys.

Ex. she sells sea shells by the sea shore

9

Tries

by

sea

sells

shells

the

shore

she

Q. How to branch to next level?
A. One link for each possible character.

Ex. sells sea shells by the sea

10

Branching in tries

R-way trie

R empty links on leaves

by

sea

sells shells

the

Q. How to branch to next level?
A. One link for each possible character.

Ex. sells sea shells by the sea shore

11

Branching in tries

by

sea

sells shells shore

the

12

R-way existence trie: Java implementation

Node. References to R nodes.

root

8-way trie that represents { a, f, h }

dcba hgfe

class Node
{
 Node[] next = new Node[R];
 boolean end;
}

public class StringSET
{
 private static final int R = 128;
 private Node root = new Node();

 private class Node
 {
 private Node[] next = new Node[R];
 private boolean end;
 }

 public boolean contains(String s)
 { return contains(root, s, 0); }

 private boolean contains(Node x, String s, int d)
 {
 if (x == null) return false;
 if (d == s.length()) return x.end;
 char c = s.charAt(d);
 return contains(x.next[c], s, d+1);
 }

13

R-way existence trie: Java implementation

ASCII

current digit

empty trie

14

R-way existence trie: Java implementation (cont)

 public void add(String s)
 { root = add(root, s, 0); }

 private Node add(Node x, String s, int d)
 {
 if (x == null) x = new Node();
 if (d == s.length()) x.end = true;
 else
 {
 char c = s.charAt(d);
 x.next[c] = add(x.next[c], s, d+1);
 }
 return x;
 }

Sublinear search miss with tries

Tries enable user to present string keys one char at a time.

Search miss.

• Could have mismatch on first character.

• Typical case: examine only a few characters.

Search hit.

• Need to examine all L characters for equality.

• Can present possible matches after a few characters.

Space. R empty links at each leaf.

Bottom line. Fast search hit, sublinear-time search miss.
15

auto-complete
(stay tuned)

16

String set implementations cost summary

R-way trie.

• Method of choice for small R.

• Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

typical case dedup

implementation search hit insert space moby.txt actors.txt

input L L L 0.26 15.1

red-black L + log N log N C 1.40 97.4

hashing L L C 0.76 40.6

R-way trie L L RN + C 1.12 out of memory

17

Digression: Out of memory?

“ 640 K ought to be enough for anybody. ”
 — attributed to Bill Gates, 1981
 (commenting on the amount of RAM in personal computers)

“ 64 MB of RAM may limit performance of some Windows XP
 features; therefore, 128 MB or higher is recommended for
 best performance. ” — Windows XP manual, 2002

“ 64 bit is coming to desktops, there is no doubt about that.
 But apart from Photoshop, I can't think of desktop applications
 where you would need more than 4GB of physical memory, which
 is what you have to have in order to benefit from this technology.
 Right now, it is costly. ” — Bill Gates, 2003

Digression: Out of memory?

A short (approximate) history.

18

machine year
address

bits
addressable

memory
typical actual

memory cost

PDP-8 1960s 12 6 KB 6 KB $16K

PDP-10 1970s 18 256 KB 256 KB $1M

IBM S/360 1970s 24 4 MB 512 KB $1M

VAX 1980s 32 4 GB 1 MB $1M

Pentium 1990s 32 4 GB 1 GB $1K

Xeon 2000s 64 enough 4 GB $100

?? future 128+ enough enough $1

“ 512-bit words ought to be enough for anybody. ”
 — Kevin Wayne, 2003

A modest proposal

Number of atoms in the universe (estimated). ≤ 2266.
Age of universe (estimated). 20 billion years ~ 250 seconds ≤ 280 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every object.

Observation. 512 bits ought to be enough.

Use trie to map to current location.

• Represent location as 64 8-bit chars (512 bits).

• 256-way trie wastes 255/256 actual memory.

• Need better use of memory.
19

place time cushion for whatever

266 bits 80 bits 174 bits

20

‣ tries
‣ TSTs
‣ applications

21

Ternary search tries

TST. [Bentley-Sedgewick, 1997]

• Store characters in internal nodes, records in external nodes.

• Use the characters of the key to guide the search

• Each node has three children: smaller (left), equal (middle), larger (right).

22

Ternary search tries

TST. [Bentley-Sedgewick, 1997]

• Store characters in internal nodes, records in external nodes.

• Use the characters of the key to guide the search.

• Each node has three children: smaller (left), equal (middle), larger (right).

Ex. sells sea shells by the sea

Observation. Only three null links in leaves!

sells

by

sea

shells

the

23

Ternary search tries

TST. [Bentley-Sedgewick, 1997]

• Store characters in internal nodes, records in external nodes.

• Use the characters of the key to guide the search.

• Each node has three children: smaller (left), equal (middle), larger (right).

Ex. sells sea shells by the sea shore

Observation. Only three null links in leaves!

by

sells

sea

shells

the

shore

24

26-Way Trie vs. TST

TST. Collapses empty links in 26-way trie.

26-way trie (1035 null links, not shown)

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

A TST node is five fields:

• A character c.

• A reference to a left TST. [smaller]

• A reference to a middle TST. [equal]

• A reference to a right TST. [larger]

• A bit to indicate whether this
node is the last character in some key.

25

TST representation

root

h

ia

sd

had is

i

p

hip

c

k

hack

hi

class Node
{
 char c;
 Node left, mid, right;
 boolean end;
}

26

TST: Java implementation

public class TST
{
 private class Node
 { /* see previous slide */ }

 public boolean contains(String s)
 { return contains(root, s, 0); }

 private boolean contains(Node x, String s, int d)
 {
 if (x == null) return false;
 char c = s.charAt(d);
 if (c < x.c) return contains(x.left, s, d);
 else if (c > x.c) return contains(x.right, s, d);
 else if (d < s.length()-1) return contains(x.mid, s, d+1);
 else return x.end;
 }

 public void add(String s)
 { /* see next slide */ }
}

27

TST: Java implementation (cont)

 public void add(String s)
 { root = add(root, s, 0); }

 private Node add(Node x, String s, int d)
 {
 char c = s.charAt(d);
 if (x == null) x = new Node(c);
 if (c < x.c) x.left = add(x.left, s, d);
 else if (c > x.c) x.right = add(x.right, s, d);
 else if (d < s.length()-1) x.mid = add(x.mid, s, d+1);
 else x.end = true;
 return x;
 }

28

String set implementation cost summary

Remark. Can build balanced TSTs via rotations to achieve L + log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

typical case dedup

implementation search hit insert space moby.txt actors.txt

input L L L 0.26 15.1

red-black L + log N log N C 1.40 97.4

hashing L L C 0.76 40.6

R-way trie L L RN + C 1.12 out of memory

TST L L 3 C 0.72 38.7

29

TST with R2 branching at root

Hybrid of R-way and TST.

• Do R2-way branching at root.

• Each of R2 root nodes points to a TST.

Note. Need special test for one- and two-letter words.

TST

aa

TST

ab

TST

ac

TST

zz

TST

zy

…

array of R2 roots

30

String set implementation cost summary

Bonus. TST performance even better with nonuniform keys.
Ex. 5 times faster than hashing for library call numbers.

typical case dedup

implementation search hit insert space moby.txt actors.txt

input L L L 0.26 15.1

red-black L + log N log N C 1.40 97.4

hashing L L C 0.76 40.6

R-way trie L L RN + C 1.12 out of memory

TST L L 3C 0.72 38.7

TST with R2 L L 3C + R2 0.51 32.7

31

TST vs. hashing

Hashing.

• Need to examine entire key.

• Hits and misses cost about the same.

• Need good hash function for every key type.

• No help for ordered-key APIs.

TSTs.

• Works only for digital keys.

• Need to examine just enough key characters.

• Search miss may only involve a few characters.

• Can handle ordered-key APIs.

Bottom line. TSTs are faster than hashing (especially for search misses)
and more flexible than red-black trees (stay tuned).

32

‣ tries
‣ TSTs
‣ applications

33

Extending the StringSET API

Add. Insert a key.
Contains. Check if given key in the set.
Delete. Delete key from the set.

Sort. Iterate over keys in ascending order.
Select. Find the kth largest key.
Range search. Find all elements between k1 and k2.

Longest prefix match. Find longest prefix match.
Wildcard match. Allow wildcard characters.
Near neighbor search. Find strings that differ in ≤ P chars.

compareTo()

charAt()

equals()

34

Longest prefix match

Find string in set with longest prefix matching given key.

Ex. Search IP database for longest prefix matching destination IP,
and route packets accordingly.

"128"
"128.112"
"128.112.136"
"128.112.055"
"128.112.055.15"
"128.112.155.11"
"128.112.155.13"
"128.222"
"128.222.136"

prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

35

R-way trie implementation of longest prefix match operation

Easy to implement for R-way trie (below) or TST (see book).

 public String prefix(String s)
 {
 int length = prefix(root, s, 0);
 return s.substring(0, length);
 }

 private int prefix(Node x, String s, int d)
 {
 if (x == null) return 0;
 int length = 0;
 if (x.end) length = d;
 if (d == s.length()) return length;
 char c = s.charAt(d);
 return Math.max(length, prefix(x.next[c], s, d+1));
 }

36

Wildcard match

Use wildcard . to match any character in alphabet.

co....er .c...c.

coalizer
coberger
codifier
cofaster
cofather
cognizer
cohelper
colander
coleader
...
compiler
...
composer
computer
cowkeper

acresce
acroach
acuracy
octarch
science
scranch
scratch
scrauch
screich
scrinch
scritch
scrunch
scudick
scutock

Search as usual if character is not a period;
go down all three branches if query character is a period.

37

Wildcard match: TST implementation

 public void wildcard(String s)
 { wildcard(root, s, 0, ""); }

 private void wildcard(Node x, String s, int d, String prefix)
 {
 if (x == null) return;
 char c = s.charAt(i);
 if (c == '.' || c < x.c) wildcard(x.left, s, d, prefix);
 if (c == '.' || c == x.c)
 {
 if (i < s.length() - 1)
 wildcard(x.mid, s, d+1, prefix + x.c);
 else if (x.end)
 StdOut.println(prefix + x.c);
 }
 if (c == '.' || c > x.c) wildcard(x.right, s, d, prefix);
 }

38

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired
letter appears.

T9 text input. ["A much faster and more fun way to enter text."]

• Find all words that correspond to given sequence of numbers.

• Press 0 to see all completion options.

Ex. hello

• Multi-tap: 4 4 3 3 5 5 5 5 5 5 6 6 6

• T9: 4 3 5 5 6

www.t9.com

39

TST: collapsing 1-way branches

Collapsing 1-way branches at bottom.

• Internal node stores char; external node stores full key.

• Append sentinel character '\0' to every key.

• Search hit ends at leaf with given key.

• Search miss ends at null link or leaf with different key.

Collapsing interior 1-way branches.

• Keep char position in nodes.

• Need full compare at leaf.
s

hby the

e shells

l

sea sells
40

TST: collapsing 1-way branches

Collapsing 1-way branches at bottom.

• Internal node stores char; external node stores full key.

• Append sentinel character '\0' to every key.

• Search hit ends at leaf with given key.

• Search miss ends at null link or leaf with different key.

Collapsing interior 1-way branches.

• Keep char position in nodes.

• Need full compare at leaf.

shells

e

shore

s

hby the

e

l

sea sells

41

String set implementation cost summary

Challenge met.

• Efficient performance for arbitrarily long keys.

• Search time is independent of key length!

typical case

implementation search hit insert space

red-black L + log N log N C

hashing L L C

R-way trie L L RN + C

TST L L 3C

TST with R2 L L 3C + R2

R-way with no 1-way logR N logR N RN + C

TST with no 1-way log N log N C

42

A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

• Collapse one-way branches in binary trie.

• Thread trie to eliminate multiple node types.

Applications.

• Database search.

• P2P network search.

• IP routing tables: find longest prefix match.

• Compressed quad-tree for N-body simulation.

• Efficiently storing and querying XML documents.

Beyond the scope of COS 226 (see Program 15.7).

43

Suffix tree

Suffix tree. Threaded trie with collapsed 1-way branching for string suffixes.

Applications.

• Linear-time longest repeated substring.

• Computational biology databases (BLAST, FASTA).

Beyond the scope of COS 226.
44

Symbol tables summary

A success story in algorithm design and analysis.

Binary search trees. Randomized, red-black.

• Performance guarantee: log N compares.

• Supports extensions to API based on key order.

Hash tables. Separate chaining, linear probing.

• Performance guarantee: N/M probes.

• Requires good hash function for key type.

• Enjoys systems support (ex: cached value for String).

Tries. R-way, TST.

• Performance guarantee: log N characters accessed.

• Supports extensions to API based on partial keys.

Bottom line. You can get at anything by examining 50-100 bits (!!!)

