
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 4, 2008 11:40:49 AM

Binary Search Trees

References:
 Algorithms in Java, Chapter 12
 Intro to Programming, Section 4.4
 http://www.cs.princeton.edu/algs4/42bst

‣ basic implementations
‣ randomized BSTs
‣ deletion in BSTs

2

Elementary implementations: summary

Challenge. Efficient implementations of search and insert.

implementation
worst case average case ordered

iteration?
operations

on keys
search insert search hit insert

unordered array N N N/2 N no equals()

unordered list N N N/2 N no equals()

ordered array lg N N lg N N/2 yes compareTo()

ordered list N N N/2 N/2 yes compareTo()

3

‣ binary search tree
‣ randomized BSTs
‣ deletion in BSTs

Def. A BST is a binary tree in symmetric order.

A binary tree is either:

• Empty.

• A key-value pair and two disjoint binary trees.

Symmetric order. Every node’s key is:

• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

4

Binary search trees

the

was

it

of times

best

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

A BST is a reference to a root node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.

5

BST representation

Key and Value are generic types;
Key is Comparable

smaller keys larger keys

private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
}

it 2

root

best 1

null null
was 2

null

the 1

of 1

null null
times 1

null null

key val

left right

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 {
 private Key key;
 private Value val;
 private Node left, right;
 public Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 }
 }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Val get(Key key)
 { /* see next slides */ }
}

6

BST implementation (skeleton)

instance variable

instance variable

Get. Return value corresponding to given key, or null if no such key.

7

BST search

Searching in a BST

best

it

the

was

best

it

the

was

best

best

best

best

it

the

of

of

of

was

times is after it
so go to the right

times is before was
so go to the left

unsuccessful search
for a node with key times

times is after the
but the right link is null
so the BST has no node

having that key

the is after it
so go to the right

success!

of

it

the

was

of

it

the

was

of

it

the

was

the is before was
 so go to the left

successful search
for a node with key the

Searching in a BST

best

it

the

was

best

it

the

was

best

best

best

best

it

the

of

of

of

was

times is after it
so go to the right

times is before was
so go to the left

unsuccessful search
for a node with key times

times is after the
but the right link is null
so the BST has no node

having that key

the is after it
so go to the right

success!

of

it

the

was

of

it

the

was

of

it

the

was

the is before was
 so go to the left

successful search
for a node with key the

Get. Return value corresponding to given key, or null if no such key.

Running time. Proportional to depth of node.

8

BST search: Java implementation

 public Value get(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

Put. Associate value with key.

9

BST insert

Inserting a new node into a BST

timesinsert

times

times is after the
so it goes on the right

the

was

the

was

best

it

best

it

best

it

best

it

the

of

of

of

was

times is after it
so go to the right

times is before was
so go to the left

the

was

of

Put. Associate value with key.

Running time. Proportional to depth of node.
10

BST insert: Java implementation

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 return x;
 }

concise, but tricky,
recursive code;
read carefully!

11

BST construction example

Constructing a BST

best

of

it

the

times

was

best

of

it

the

times

worst

was

best

of

it

the

was

best

it

the

was

it

the

was

it

it

was

key
inserted

was

the

best

of

times

worst

it

Constructing a BST

best

of

it

the

times

was

best

of

it

the

times

worst

was

best

of

it

the

was

best

it

the

was

it

the

was

it

it

was

key
inserted

was

the

best

of

times

worst

it

12

BST insertion: visualization

Ex. Insert keys in random order.

13

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if no duplicate keys.

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

UE

• Many BSTs correspond to same input data.

• Cost of search/insert is proportional to depth of node.

Remark. Tree shape depends on order of insertion.

14

Tree shape

Worst-case BSTs

best

it

of

the

times

was

worst

best

worst

it

was

of

times

the

worst

was

times

the

of

it

best

Typical BSTs constructed from randomly ordered keys

it

of

thebest was

worst

times

Typical BSTs constructed from randomly ordered keys

the

times worst

was

best of

it

best case typical case worst case

15

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of tree is ~ 4.311 ln N – 1.953 ln ln N.

But… Worst-case for search/insert/height is N (but occurs with
exponentially small chance when keys are inserted in random order).

16

ST implementations: summary

Next challenge. Ordered iteration.

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert search hit insert

unordered array N N N/2 N no equals()

unordered list N N N/2 N no equals()

ordered array lg N N lg N N/2 yes compareTo()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N ? compareTo()

Traversing the tree inorder yields keys in ascending order.

To implement an iterator: need a non-recursive version.

Inorder traversal

17

 public void show()
 { return show(root); }

 private void show(Node x)
 {
 if (x == null) return;
 show(x.left);
 StdOut.println(x.key + " " + x.val);
 show(x.right);
}

Recursive inorder traversal of a binary search tree

BST with smaller keys

smaller keys, in order

all keys, in order

larger keys, in order

BST with larger keys

BST

key

key

left right

val

To process a node:

• Follow left links until empty (pushing onto stack).

• Pop and process.

• Follow right link (push onto stack).

Non-recursive inorder traversal

18

stack contents

visit(E)
 visit(B)
 visit(A)
 print A
 print B
 visit(C)
 print C
 print E
 visit(S)
 visit(I)
 visit(H)
 print H
 print I
 visit(N)
 print N
 print S

 A
 B

 C
 E

 H
 I

 N
 S

E
E B
E B A
E B
E
E C
E
-
S
S I
S I H
S I
S
S N
S
-

outputrecursive calls

S

E

C

B

A

NH

I

19

Inorder iteartor: Java implementation

public Iterator<Key> iterator()
{ return new Inorder(); }

private class Inorder implements Iterator<Key>
{
 private Stack<Node> stack = new Stack<Node>();

 private void pushLeft(Node x)
 {
 while (x != null)
 { stack.push(x); x = x.left; }
 }

 BSTIterator()
 { pushLeft(root); }

 public boolean hasNext()
 { return !stack.isEmpty(); }

 public Key next()
 {
 Node x = stack.pop();
 pushLeft(x.right);
 return x.key;
 }
}

go down left
spine and push
all keys onto stack

20

ST implementations: summary

Next challenge. Guaranteed efficiency for search and insert.

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert search hit insert

unordered array N N N/2 N no equals()

unordered list N N N/2 N no equals()

ordered array lg N N lg N N/2 yes compareTo()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

Problem. Frequency counts in “Tale of Two Cities”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Unordered array.
2) Unordered linked list
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.
6) BSTs.

Searching challenge 3 (revisited):

21

insertion cost < 10000 * 1.38 * lg 10000 < .2 million
lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

22

‣ basic implementations
‣ randomized BSTs
‣ deletion in BSTs

Two fundamental operations to rearrange nodes in a tree.

• Maintain symmetric order.

• Local transformations (change just 3 pointers).

• Basis for advanced BST algorithms.

Strategy. Use rotations on insert to adjust tree shape to be more balanced.

Key point. No change to BST search code (!)
23

Rotation in BSTs

A B

C

CB

A

u
h

h

v
u

v

h = rotL(u)

h = rotR(v)

24

Rotation in BSTs

Two fundamental operations to rearrange nodes in a tree.

• Easier done than said.

• Raise some nodes, lowers some others.

root = rotL(A) a.right = rotR(S)
private Node rotL(Node h)
{
 Node v = h.right;
 h.right = v.left;
 v.left = h;
 return v;
}

private Node rotR(Node h)
{
 Node u = h.left;
 h.left = u.right;
 u.right = h;
 return u;
}

Insert a node and make it the new root.

• Insert node at bottom, as in standard BST.

• Rotate inserted node to the root.

• Compact recursive implementation.

25

BST root insertion

insert G

tricky recursive
code; read very
carefully!

 private Node putRoot(Node x, Key key, Val val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 {
 x.left = putRoot(x.left, key, val);
 x = rotR(x);
 }
 else if (cmp > 0)
 {
 x.right = putRoot(x.right, key, val);
 x = rotL(x);
 }
 else if (cmp == 0) x.val = val;
 return x;
}

26

BST root insertion: construction

Ex. A S E R C H I N G X M P L

Why bother?

• Recently inserted keys are near the top (better for some clients).

• Basis for randomized BST.

Intuition. If tree is random, height is logarithmic.
Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability 1/(N+1),
make it the root (via root insertion) with probability 1/(N+1).

private Node put(Node x, Key key, Value val)
{
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);

 if (cmp == 0) { x.val = val; return x; }

 if (StdRandom.bernoulli(1.0 / (x.N + 1.0))
 return putRoot(h, key, val);

 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);

 x.N++;
 return x;
}

Randomized BSTs (Roura, 1996)

27

maintain count of nodes in
subtree rooted at x

root insert with the right
probability

no rotations if key in table

and apply idea recursively

28

Randomized BST: construction

Ex. Insert 15 keys in ascending order.

29

Randomized BST construction: visualization

Ex. Insert 500 keys in random order.

30

Randomized BST: analysis

Proposition. Randomized BSTs have the same distribution as BSTs under
random insertion order, no matter in what order keys are inserted.

• Expected height is ~ 4.31107 ln N.

• Average search cost is ~ 2 ln N.

• Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

Typical BSTs constructed from randomly ordered keys

it

of

thebest was

worst

times

ST implementations: summary

Bottom line. Randomized BSTs provide the desired guarantee.

Bonus. Randomized BSTs also support delete (!)
31

probabilistic, with exponentially
small chance of linear time

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert search hit insert

unordered array N N N/2 N no equals()

unordered list N N N/2 N no equals()

ordered array lg N N lg N N/2 yes compareTo()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

randomized BST 3 lg N 3 lg N 1.38 lg N 1.38 lg N yes compareTo()

32

‣ basic implementations
‣ randomized BSTs
‣ deletion in BSTs

33

BST deletion: lazy approach

To remove a node with a given key:

• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. O(log N') per insert, search, and delete, where N' is the number of
elements ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

I tombstone

34

BST deletion: Hibbard deletion

To remove a node from a BST:

• Zero children: just remove it.

• One child: pass the child up.

• Two children: find the next largest node using right-left*, swap with
next largest, remove as above.

zero children one child two children

35

BST deletion: Hibbard deletion

To remove a node from a BST:

• Zero children: just remove it.

• One child: pass the child up.

• Two children: find the next largest node using right-left*, swap with
next largest, remove as above.

Unsatisfactory solution. Not symmetric, code is clumsy.
Surprising consequence. Trees not random (!) ⇒ sqrt(N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

zero children one child two children

To delete a node containing a given key:

• Find the node containing the key.

• Remove the node.

• Join its two subtrees to make a tree.

Ex. Delete S.

Randomized BST deletion

36

E

SA

C

H R

I

N

X

To delete a node containing a given key:

• Find the node containing the key.

• Remove the node.

• Join its two subtrees to make a tree.

Ex. Delete S.

Randomized BST deletion

37

join these two subtrees

private Node remove(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = remove(x.left, key);
 else if (cmp > 0)
 x.right = remove(x.right, key);
 else if (cmp == 0)
 return join(x.left, x.right);
 return x;
}

E

A

C

H R

I

N

X

Randomized BST join

To join two subtrees with all keys in one less than all keys in the other:

• Maintain counts of nodes in subtrees a and b.

• With probability |a|/(|a|+|b|):

- root = root of a
- left subtree = left subtree of a

- right subtree = join b and right subtree of a

• With probability |a|/(|a|+|b|) do the symmetric operations.

38

X

make I the root
with probability 4/5

and recursively join these
two subtrees to form right
subtree of I

H R

I

N

X

to join these two subtrees

H R

I

N

X

Randomized BST join

To join two subtrees with all keys in one less than all keys in the other:

• Maintain counts of nodes in subtrees a and b.

• With probability |a|/(|a|+|b|):

- root = root of a
- left subtree = left subtree of a

- right subtree = join b and right subtree of a

• With probability |a|/(|a|+|b|) do the symmetric operations.

39

make R the root
with probability 2/3

private Node join(Node a, Node b)
{
 if (a == null) return b;
 if (b == null) return a;
 if (StdRandom.bernoulli((double) a.N / (a.N + b.N))
 { a.right = join(a.right, b); return a; }
 else
 { b.left = join(a, b.left); return b; }
}

to join these two
subtrees

R

N

X

R

N X

To delete a node containing a given key:

• Find the node containing the key.

• Remove the node.

• Join its two subtrees to make a tree.

Proposition. Tree still random after delete (!).
Bottom line. Logarithmic guarantee for search/insert/delete.

Randomized BST deletion

40

E

SA

C

H R

I

N

X

E

IA

C

N X

H R

ST implementations: summary

Bottom line. Randomized BSTs provide the desired guarantee.
Next lecture. Can we do better?

41

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert delete search hit insert delete

unordered array N N N N/2 N N/2 no equals()

unordered list N N N N/2 N N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

ordered list N N N N/2 N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 3 lg N 3 lg N 3 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

probabilistic, with exponentially
small chance of linear time

