7.8 Intractability

Introduction to Computer Science - Robert Sedgewick and Kevin Wayne - Copyright © 2006 - http://www.cs.Princeton.EDU/IntroCS
Q. Which algorithms are useful in practice?

A working definition. [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

- Model of computation = deterministic Turing machine.
- Measure running time as a function of input size N.
- Efficient = polynomial time for all inputs.

$$
{ }_{a N^{b}}
$$

Ex 1. Sorting N elements takes N^{2} steps using insertion sort.
Ex 2. Finding best TSP tour on N elements takes $N!$ steps using exhaustive search.

Theory. Definition is broad and robust.
Practice. Poly-time algorithms scale to huge problems.
constants a and b tend to be small

Exponential Growth

Properties of Problems

Q. Which problems can we solve in practice?
A. Those with poly-time algorithms.
Q. Which problems have poly-time algorithms?
A. No easy answers. Focus of today's lecture.

- Will not help solve 1,000 city TSP problem via brute force.

$$
\begin{aligned}
& 1000!» 10^{1000} \gg 10^{79} \times 10^{13} \times 10^{17}
\end{aligned}
$$

Exponential growth dwarfs technological change.

- Suppose you have a giant parallel computing device...
- With as many processors as electrons in the universe...
- And each processor has power of today's supercomputers..
- And each processor works for the life of the universe...

Quantity	Value
electrons in universe †	10^{79}
supercomputer instructions per second	10^{13}
age of universe in seconds ${ }^{\dagger}$	10^{17}

\dagger Estimated

LSOLVE. Given a system of linear equations, find a solution.

```
0x
2\mp@subsup{x}{0}{}+4\mp@subsup{x}{1}{}-2\mp@subsup{x}{2}{}=
\mp@subsup{x}{1}{}}
x}
```

LP. Given a system of linear inequalities, find a solution

ILP. Given a system of linear inequalities, find a binary solution.

Search Problems

$$
\downarrow \text { or report none exists }
$$

Search problem. Given an instance I of a problem, find a solution S. Requirement. Must be able to efficiently check that S is a solution.
poly-time in size of instance I

LSOLVE. Given a system of linear equations, find a solution.
LP. Given a system of linear inequalities, find a solution
ILP. Given a system of linear inequalities, find a binary solution.
Q. Which of these problems have poly-time solutions?
A. No easy answers.
\checkmark LSOLVE. Yes. Gaussian elimination solves N -by- N system in N^{3} time.
\checkmark LP. Yes. Celebrated ellipsoid algorithm is poly-time.
? ILP. No poly-time algorithm known or believed to exist!

Search Problems

$\boxed{6}$ or report none exists
Search problem. Given an instance I of a problem, find a solution S. Requirement. Must be able to efficiently check that S is a solution.

- poly-time in size of instance I

LSOLVE. Given a system of linear equations, find a solution.
2x0}+4\mp@subsup{x}{1}{}-2\mp@subsup{x}{2}{}=
2x0}+4\mp@subsup{x}{1}{}-2\mp@subsup{x}{2}{}=
0x0}+3\mp@subsup{x}{1}{}+15\mp@subsup{x}{2}{}=3
0x0}+3\mp@subsup{x}{1}{}+15\mp@subsup{x}{2}{}=3
instance I
solution S

- To check solution S, plug in values and verify each equation
$\boxed{ }$ or report none exists
Search problem. Given an instance I of a problem, find a solution S. Requirement. Must be able to efficiently check that S is a solution.
poly-time in size of instance I

LP. Given a system of linear inequalities, find a solution.

$$
\begin{aligned}
48 x_{0}+16 x_{1}+119 x_{2} & \leq 88 \\
5 x_{0}+4 x_{1}+35 x_{2} & \geq 13 \\
15 x_{0}+4 x_{1}+20 x_{2} & \geq 23
\end{aligned}
$$

instance I

solution S

- To check solution S, plug in values and verify each inequality (and check that solution is $0 / 1$).

ILP. Given a system of linear inequalities, find a binary solution.
\mp@subsup{x}{0}{}+\quad+\mp@subsup{x}{2}{}\geq1
\mp@subsup{x}{0}{}+\quad+\mp@subsup{x}{2}{}\geq1
$x_{1}=1$
$x_{2}=1$
instance I solution S

Search problem. Given an instance I of a problem, find a solution S. Requirement. Must be able to efficiently check that S is a solution.

- poly-time in size of instance I

NP

Def. NP is the class of all search problems.
slighly non-standard definition

Def. NP is the class of all search problems.
Problem

Significance. What scientists and engineers aspire to compute feasibly.

- To check solution S, plug in values and verify each inequality.

P

Def. P is the class of search problems solvable in poly-time.

$$
\$_{\text {slightly non-standard definition }}
$$

Problem	Description	Poly-time algorithm	Instance	Solution
STCONN (G, s, t)	Find a path from sto \dagger in digraph \mathbf{G}.	depth-first search (Theseus)		
SORT (a)	Find permutation that puts a in ascending order.	mergesort (von Neumann 1945)	$\begin{array}{lll} 2.3 & 8.5 & 1.2 \\ 9.1 & 2.2 & 0.3 \end{array}$	524013
LSOLVE (A, b)	Find a vector x that satisfies $A x=b$.	Gaussian elimination (Edmonds, 1967)	$\begin{aligned} & \begin{array}{l} x_{0}+x_{1}+1 x_{2}=4 \\ 2 x_{0} \end{array}{ }^{2}+4 x_{1}-2 x_{2}=2 \\ & 0 x_{0}+3 x_{1}+15 x_{2}=36 \end{aligned}$	$\begin{aligned} & x_{0}-1 \\ & x_{1}=2 \\ & x_{2}=2 \end{aligned}$
$\underset{(A, b)}{L P}$	Find a vector x that satisfies $A x \leq b$.	ellipsoid (Khachiyan, 1979)		$x_{0}=1$ $x_{1}=1$ $x_{2}=1 / 3$

Significance. What scientists and engineers compute feasibly.

Extended Church-Turing thesis.
$P=$ search problems solvable in poly-time in this universe.

Evidence supporting thesis. True for all physical computers.
Implication. To make future computers more efficient, suffices to focus on improving implementation of existing designs.

A new law of physics? A constraint on what is possible.
Possible counterexample? Quantum computers.

The Central Question
P. Class of search problems solvable in poly-time.

NP. Class of all search problems.
Does $P=N P$? [Is checking a solution as easy as finding one?]

Two worlds.

If yes... Poly-time algorithms for 3-SAT, ILP, TSP, FACTOR, ... If no... Would learn something fundamental about our universe.

Overwhelming consensus. $P \neq N P$.

A Hard Problem: 3-Satisfiability
Classifying Problems

Literal. A Boolean variable or its negation.

Clause. A disjunction of 3 distinct literals.

Conjunctive normal form. A propositional formula that is the conjunction of clauses.

3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, find a satisfying truth assignment (if one exists).
$\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right)$
Solution: $x_{1}=$ true, $x_{2}=$ true, $x_{3}=$ false, $x_{4}=$ true

Key application. Electronic design automation (EDA).
Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.
"intractable"

Q. Which search problems are in P ?
A. No easy answers (we don't even know whether $P=N P$).

Goal. Formalize notion:
Problem X is computationally not much harder than problem Y .

LSOLVE Reduces to LP

LSOLVE. Given a system of linear equations $A x=b$, find a solution x.

```
0x
2x
0x0}+3\mp@subsup{x}{1}{}+15\mp@subsup{x}{2}{}=3
```

LSOLVE instance with n variables

LP. Given a system of linear inequalities $A x \leq b$, find a solution x.

corresponding LP instance with n variables and $2 n$ inequalities

Design algorithms. If poly-time algorithm for Y, then one for X too.
Establish intractability. If no poly-time algorithm for X, then none for Y.
3-SAT your research problem

3-SAT. Given a CNF formula Φ, find a satisfying truth assignment.

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right)
$$

3 -SAT instance with n variables, k clauses

ILP. Given a system of linear inequalities, find a binary solution.

```
C1}\geq1-\mp@subsup{x}{1}{
C1}\geq\mp@subsup{x}{2}{
C1}\geq\mp@subsup{x}{3}{
C
C}\mp@subsup{C}{1}{}=1\mathrm{ iff clause 1 is satisfied
```

```
\Phi \leq C C
```

\Phi \leq C C
\Phi \leq C C
\Phi \leq C C
\Phi}\leq\mp@subsup{C}{3}{
\Phi}\leq\mp@subsup{C}{3}{
\Phi}\leq\mp@subsup{C}{4}{
\Phi}\leq\mp@subsup{C}{4}{
\Phi\geq\mp@subsup{C}{1}{}+\mp@subsup{C}{2}{}+\mp@subsup{C}{3}{}+\mp@subsup{C}{4}{}-3
=>\Phi=1 iff C

```


Conjecture: no poly-time algorithm for 3-SAT. (and, hence, for none of Karp problems)

\section*{Still More Reductions from 3-SAT}

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.
Chemical engineering. Heat exchanger network synthesis.
Chemistry. Protein folding.
Civil engineering. Equilibrium of urban traffic flow.
Economics. Computation of arbitrage in financial markets with friction. Electrical engineering. VLSI layout.
Environmental engineering. Optimal placement of contaminant sensors. Financial engineering. Minimum risk portfolio of given return. Game theory. Nash equilibrium that maximizes social welfare
Mathematics. Given integer \(\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\), compute \(\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \times \cos \left(a_{2} \theta\right) \times \cdots \times \cos \left(a_{n} \theta\right)\) Mechanical engineering. Structure of turbulence in sheared flows. Medicine. Reconstructing 3d shape from biplane angiocardiogram. Operations research. Traveling salesperson problem, integer programming
Physics. Partition function of 3d Ising model.
Politics. Shapley-Shubik voting power.
Pop culture. Versions of Sudoko, Checkers, Minesweeper, Tetris.
Statistics. Optimal experimental design.
6,000+ scientific papers per year.
Q. Why do we believe 3-SAT has no poly-time algorithm?

Def. An NP problem is NP-complete if all problems in NP reduce to it.

> every NP problem is a 3-SAT problem in disguise

Theorem. [Cook 1961] 3-SAT is NP-complete
Corollary. Poly-time algorithm for 3-SAT \(\Rightarrow P=N P\).

Two worlds.


Cook + Karp



\section*{Implications of NP-Completeness}

Implication. [3-SAT captures difficulty of whole class NP.]
- Poly-time algorithm for 3-SAT iff \(P=N P\)
- If no poly-time algorithm for some NP problem, then none for 3-SAT.

Remark. Can replace 3-SAT with any of Karp's problems.

Proving a problem intractable guides scientific inquiry
- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager finds closed form solution to 2D version in tour de force.
- 19xx: Feynman and other top minds seek 3D solution
. 2000: 3-SAT reduces to 3D-ISING. a holy grail of statistical mechanics ,
search for closed formula appears doomed

\section*{Coping with Intractability}

\section*{Coping With Intractability}

Relax one of desired features.
- Solve the problem in poly-time.
- Solve the problem to optimality
- Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.
- No guarantees on quality of solution.
- Ex. TSP assignment heuristics.
- Ex. Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm. Find solution of provably good quality.
- Ex. MAX-3SAT: provably satisfy \(87.5 \%\) as many clauses as possible.
but if you can guarantee to satisfy \(87.51 \%\) as many clauses
as possible in poly-time, then \(P=N P\) !

Relax one of desired features.
- Solve the problem in poly-time.
- Solve the problem to optimality
- Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.
- Instance(s) you want to solve may be "easy."
- Chaff solves real-world SAT instances with \(\sim 10 \mathrm{k}\) variable. [Matthew Moskewicz '00, Conor Madigan '00, Sharad Malik] 1
PU senior independent work (!)

Relax one of desired features.
- Solve the problem in poly-time.
- Solve the problem to optimality
- Solve arbitrary instances of the problem.

Special cases may be tractable.
- Ex: Linear time algorithm for 2-SAT.
- Ex: Linear time algorithm for Horn-SAT.
each clause has at most one un-negated literal

Modern cryptography.
- Ex. Send your credit card to Amazon.
- Ex. Digitally sign an e-document.
- Enables freedom of privacy, speech, press, political association.

RSA cryptosystem.
- To use: multiply two n-bit integers. [poly-time]
- To break: factor a \(2 n\)-bit integer. [unlikely poly-time]

> Multiply = EASY


Factor \(=\) HARD

\section*{Exploiting Intractability: Cryptography}

FACTOR. Given an \(n\)-bit integer \(x\), find a nontrivial factor.
\[
V_{\text {not } 1 \text { or } x}
\]
Q. What is complexity of FACTOR?
A. In NP, but not known (or believed) to be in P or NP-complete.
Q. What if \(P=N P\) ?
A. Poly-time algorithm for factoring; modern e-conomy collapses.

Quantum. [Shor 1994] Can factor an n-bit integer in \(n^{3}\) steps on a "quantum computer."

\section*{Exploiting Intractability: Cryptography}

FACTOR. Given an \(n\)-bit integer \(x\), find a nontrivial factor.
\({ }^{n o t} 1\) or \(x\)

74037563479561712828046796097429573142593188889231289 08493623263897276503402826627689199641962511784399589 43305021275853701189680982867331732731089309005525051 16877063299072396380786710086096962537934650563796359

RSA-704
( \(\$ 30,000\) prize if you can factor)

\section*{Summary}
P. Class of search problems solvable in poly-time.

NP. Class of all search problems, some of which seem wickedly hard. NP-complete. Hardest problems in NP.

Many fundamental problems are intractable.
- TSP, 3-SAT, 3-COLOR, ILP.
- 3D-ISING.

Theory says: we probably can' \(\dagger\) design efficient algorithms for them.
- You will confront NP-complete problems in your career.
- So, identify these situations and proceed accordingly.```

