
Telling a computer
how to behave
(via pseudocode -- a workaround
for Computing’s Tower of Babel.)

COS 116: 2/12/2008
Sanjeev Arora

Jan 29, 2008

Steps in solving a computational task

 Design an algorithm: A precise,unambiguous
description for how to compute a solution.

 Express algorithm in pseudocode.

 Turn pseudocode into computer program.

Example: Adding two numbers

Discussion
Time

Imagine you are describing this task to somebody who has never done
it. How would you describe it?

 Our robot is getting ready for a big date…

 How would it identify the cheapest bottle?
(Say it can scan prices)

Discussion
Time

Solution

 Pick up first bottle, check price

 Walk down aisle. For each bottle, do this:
 If price on bottle is less than price in hand,

exchange for one in hand.

How can we describe an algorithm precisely
enough so there is no ambiguity?

Recall: Scribbler’s “Language”

 Several types of simple instructions
 E.g. “Move forward for 1 s”

 Two types of compound instructions

If <condition> Then
{

List of instructions
}
Else
{

List of instructions
}

Do 5 times
{

List of instructions
}

Conditional (a.k.a. Branching)
Loop (2 types)

Do while (condition)
{
List of instructions
}

Scribbler language illustrates essential
features of all computer languages

 Fundamental features of human languages:nouns/verbs/adjectives,
subjects/objects, pronouns, etc.

 Computer languages also share fundamental features, e.g. conditional
and loop statements, variables, ability to perform arithmetic, etc.

Java

C++BASIC

Python

Computing’s Tower of Babel

Similar question in different setting

 Robot has n prices stored in memory

 Wants to find minimum price

Computer Memory: simplified view

 A scratchpad that can be perfectly erased
and re-written any number of times

 A variable: a piece of memory with a
name; stores a “value”

22.99i =

valuename

Examples

i ← 5 Sets i to value 5

j ← i Sets j to whatever value is in i.
Leaves i unchanged

i ← j + 1 Sets i to j + 1.
Leaves j unchanged

i ← i + 1 Sets i to 1 more than it was.

Arrays

 A is an array of n values, A[i] is the i’th
value

 Example: A[3] = 52.99

40.99 62.99 52.99 … 22.99A =

Recall Solution

 Pick up first bottle, check price

 Walk down aisle. For each bottle, do this:
 If price on bottle is less than price in hand,

exchange for one in hand.

Procedure findmin
(in pseudocode)
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if (A[i] < A[best]) then
 { best ← i }

}
Output A[best].

Another way to do the same

best ← 1;
i ← 1
Do while (i < n)
{

i ← i + 1;
if (A[i] < A[best]) then

{ best ← i }
}

New problem for robot: sorting

Arrange them so prices increase from left to right.

Solution

Do for i=1 to n-1
{
 Find cheapest bottle among those numbered i to n

 Swap that bottle and the i ’th bottle.
}

“selection sort”

Task for Thurs: Write pseudocode for selection sort; due at
the start of lecture.

Swapping

 Suppose x and y are variables.
How do you swap their values?

 Need extra variable!

tmp ← x
x ← y
y ← tmp

Aside: History of Algorithm

 Named for Abu Abdullah Muhammad bin
Musa al-Khwarizmi
(780-850AD)
 His book "Al-Jabr wa-al-Muqabilah" evolved

into today's high school algebra text.
 Notion of algorithm has existed for at

least 2000 years (in Hindu, Chinese, and
Greek traditions)

 “Variables” in algebra come from the
same tradition.

Fact: This simple pseudocode is all we need to express
allall possible computations (topic of a future lecture).

“Findmin? Sorting?? Pseudocode???
How about something more important?”

Coming up
on Thurs:

Extreme
Weather

