Logic: From Greeks to philosophers to circuits.

COS 116: 3/11/2008

Sanjeev Arora

Recap: Boolean Logic Example

 Ed goes to the party ifDan does not and Stella does.
Choose "Boolean variables" for 3 events:

$\{$
E: Ed goes to party
D: Dan goes to party
Each is either
TRUE or FALSE
S: Stella goes to party

$$
E=S \text { AND (NOT D) }
$$

Alternately: $\mathrm{E}=\mathrm{S}$ AND $\overline{\mathrm{D}}$

Three Equivalent Representations

Boolean Expression
Boolean Circuit

Truth table:
Value of E for every possible D, S.
TRUE=1; FALSE=0.

$$
E=S A N D \bar{D}
$$

C

D	S	E
0	0	0
0	1	1
1	0	0
1	1	0

Boolean "algebra"

A AND B written as A B A OR B written as A + B

$$
\begin{aligned}
& 0 \cdot 0=0 \\
& 0 \cdot 1=0 \\
& 1 \cdot 1= \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& 0+0=0 \\
& 1+0=1
\end{aligned}
$$

$$
1+1=1
$$

Funny arithmetic
Will provide readings on this...

Boolean gates
 High voltage = 1
 Low voltage $=0$

Shannon (1939)

Output voltage is high
if both of the input voltages are high; otherwise output voltage low.

Output voltage is high
if either of the input voltages are high; otherwise output voltage low.

Output voltage is high
if the input voltage is low; otherwise output voltage high.

Claude Shannon (1916-2001)

Founder of many fields
(circuits, information theory, artificial intelligence...)

Combinational circuit

- Boolean gates connected by wires

Wires: transmit voltage
(and hence value)

- Important: no cycles allowed

Examples

4-way AND

(Sometimes we use this for shorthand)

More complicated example

\leftarrow Crossed wires that are not connected are sometimes drawn like this.

Combinational circuits and control

- "If data has arrived and packet has not been sent, send a signal"

Circuits compute functions

- Every combinational circuit computes a Boolean function of its inputs

Inputs

Outputs

Ben Revisited

Ben only rides to class if he overslept, but even then if it is raining he'll walk and show up late (he hates to bike in the rain). But if there's an exam that day he'll bike if he overslept, even in the rain.

B: Ben Bikes
\mathbf{R} : It is raining
E : There is an exam today
O: Ben overslept

How to write a boolean expression for B in terms of R, E, O ?

Ben's truth table

O	R	E	B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Truth table \rightarrow Boolean expression

Use OR of all input combinations that lead to TRUE
$B=O \cdot \bar{R} \cdot \bar{E}+O \cdot \bar{R} \cdot E+O \cdot R \cdot E$

O	R	E	B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Note:
AND, OR, and NOT gates suffice to implement every Boolean function!

Sizes of representations

- For k variables:

k	10	20	30
2^{k}	1024	1048576	1073741824

For an arbitrary function, expect roughly half of X's to be 1 (for 30 inputs roughly $1 / 2$ billion!)
$2^{k}\left\{\begin{array}{|c|c|c|c|}\hline A & B & \ldots & X \\ \hline 0 & 0 & \ldots & 0 \\ \hline 0 & 0 & \ldots & 0 \\ \hline 0 & 1 & \ldots & 0 \\ \hline 0 & 1 & \ldots & 1 \\ \hline \ldots & \ldots & \ldots & \ldots \\ \hline \ldots & \ldots & \ldots & \ldots \\ \hline 1 & 1 & \ldots & 1 \\ \hline\end{array}\right.$

$$
k+1
$$

Tools for reducing size:
(a) circuit optimization (b) modular design

Expression simplification

- Some simple rules:

$$
\begin{aligned}
& x+\bar{x}=1 \\
& x \cdot 1=x \\
& x \cdot 0=0 \\
& x+0=x \\
& x+1=1 \\
& x+x=x \cdot x=x \\
& x \cdot(y+z)=x \cdot y+x \cdot z \\
& x+(y \cdot z)=(x+y) \cdot(x+z)
\end{aligned}
$$

$$
\begin{aligned}
& x \cdot y+x \cdot \bar{y} \\
& \quad=x \cdot(y+\bar{y}) \\
& \quad=x \cdot 1 \\
& =x
\end{aligned}
$$

De Morgan's Laws:

$$
\begin{aligned}
& x \cdot y=x+y \\
& \frac{x+y}{x+y}=\underline{x}
\end{aligned}
$$

Simplifying Ben's circuit

$$
\begin{aligned}
\square & =O \cdot \bar{R} \cdot \bar{E}+O \cdot \bar{R} \cdot E+O \cdot R \cdot E \\
& =O \cdot(\bar{R} \cdot \bar{E}+\bar{R} \cdot E+R \cdot E) \\
& =O \cdot(\bar{R} \cdot(\bar{E}+E)+R \cdot E) \\
& =O \cdot(\bar{R}+R \cdot E) \\
& \cdots \\
& =O \cdot(\bar{R}+E)
\end{aligned}
$$

Something to think about: How hard is Circuit Verification?

■ Given a circuit, decide if it is "trivial" (no matter the input, it either always outputs 1 or always outputs 0)

- Alternative statement: Decide if there is any setting of the inputs that makes the circuit evaluate to 1 .

Time required?

Boole's reworking of Clarke's "proof" of existence of God (see handout)

- General idea: Try to prove that Boolean expressions $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ cannot simultaneously be true
- Method: Show $E_{1} \cdot E_{2} \cdot \ldots \cdot E_{k}=0$
- Discussion for next time: What exactly does Clarke's "proof" prove? How convincing is such a proof to you?

Also: Do Google search for "Proof of God's Existence."

Beyond combinational circuits ...

- Need 2-way communication (must allow cycles!)
- Need memory (scratchpad)

Combinational circuit for binary addition?

$$
\begin{array}{rr}
25 & 11001 \\
+\quad 29 & 11101 \\
\hline 54 & 110110
\end{array}
$$

- Want to design a circuit to add any two N bit integers.

Is the truth table method useful for $\mathrm{N}=64$?

Next time: Modular Design

Design an N-bit adder using N 1-bit adders
(Read: (a) handout on boolean logic.
(b) handout on Boole's "proof" of existence of God.)

