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Abstract—In this paper, a methodology of general applicability is presented for answering the question if an artist used a number of

archetypes to draw a painting or if he drew it freehand. In fact, the contour line parts of the drawn objects that potentially correspond to

archetypes are initially spotted. Subsequently, the exact form of these archetypes and their appearance throughout the painting is

determined. The method has been applied to celebrated Thera Late Bronze Age wall paintings with full success. It has been demonstrated

that the artist or group of artists has used seven geometrical archetypes and seven corresponding well-constructed stencils (four

hyperbolae, two ellipses, and one Archimedes’ spiral) to draw the wall painting “Gathering of Crocus” in 1650 B.C. This method of drawing

seems to be unique in the history of arts and of great importance for archaeology, and the history of mathematics and sciences, as well.

Index Terms—Image line pattern analysis, archaeological image edge analysis, archaeological object reconstruction, curve fitting,

statistical pattern matching.
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1 INTRODUCTION

THE excavations at Akrotiri of the Greek island Thera
(Santorini) in the Aegean Sea brought to light the ruins

of a prehistoric city belonging to a civilization that
flourished in the 17th century B.C., which corresponds to
the Late Cycladic I period. Of all the finds unearthed at
Akrotiri, the wall paintings constitute the most significant
contribution to our knowledge of Aegean art, civilization,
and society [2], [1].

According to prominent archaeologists, these wall paint-
ings rank alongside the greatest archaeological discoveries.
The late professor Marinatos originated the excavations in
1967,which arenowbeingcontinuedbyProfessor C.Doumas.
The Akrotiri settlement ruins and, among them, the wall
paintings have been very well-preserved since thick layers of
volcanic ash covered the entire island, ensuring the abundant
preservation of buildings and artifacts. The excavations at
Akrotiri have so far brought to light about 10 houses or larger
edifices, of which, only three have been fully explored.
“Xeste 3” is the conventional name of a freestanding edifice,
which lies in the southwestern part of the excavated
settlement.

In the second floor of “Xeste 3,” the east and
northwest murals have been decorated with wall paint-
ings whose iconographic program is comprised of
horizontal bands in the upper and lower zone and, in
the middle zone, the main theme, the celebrated
“Gathering of Crocus” (“ ”) (Fig. 1). The
women engaged in this task wear a diversity of Minoan

costumes and are bedecked with precious ornaments
(earrings, necklaces, and bracelets).

Archaeologists have noticed repetitions in the border
lines of various wall paintings [3], but the deeper reason for
these repetitions was completely unknown, as well as the
actual method with which these wall paintings were drawn.
Various disputes have emerged concerning the question if
the paintings were drawn freehand or if guides (e.g.,
stencils) were employed by the artist(s). In this paper, a
general methodology is introduced that has allowed for the
determination of the method the artists(s) used to draw the
wall painting “Gathering of Crocus.” The method of
construction is unique in the history of arts. Moreover, the
results of this paper indicate that these wall paintings
manifest a high drawing skill, as well as application and
advanced sense of geometry and technology in this Late
Bronze Age civilization.

2 A FIRST STAGE PROCESSING OF THE WALL

PAINTING IMAGES

High-quality images of the wall painting in hand were
obtained, along with a color palette and a scale so that proper
processing could be applied later to compensate possible
color and size discrepancies due to shooting conditions. The
resolution of all obtained images is approximately 60 pixels
per centimeter. Subsequently, we applied various image
segmentation methods [10], [11], [12] to all preselected wall
painting parts, each one corresponding to a different thematic
unit. Thus, quite clear-cut and accurate region border
extraction has taken place.

2.1 Defining the Notion of a Wall Painting Object

We have observed that each thematic unit consists of
various drawn elements. For example, the female motif
depicted in Fig. 1a consists of numerous elements such as:

1. the upper drawn line of the right forearm,
2. the stripes of the right lapel,
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3. the left line of the left forearm,
4. the continuous drawn line consisting of the left side

of the neck together with the left shoulder and the
left line of the left arm,

5. the upper line of the waist,
6. the outer line of each hair lock, and
7. the continuous line consisting of the forehead and

the upper line of the nose, etc.

The edge lines of each element are considered to be
objects. For example, Element 2 of the aforementioned list
corresponds to two objects, each being a continuous curve,
as shown in Fig. 2a.

Thus, one can define the object to be a subset of the wall
painting border, which represents a thematic unit, is smooth,
and has as its beginning and end points discontinuities of the
border line or of its first derivative. Careful examination of
various objects indicates that they probably are a union of
consecutive smooth curves to which the strict notion of object
part corresponds, as will be defined in the following.

2.2 Object Part Definition

Suppose that the wall painting has suffered no wear and,
therefore, that all objects’ contour lines are continuous,
described by the piecewise twice differentiable monopara-
metric vector equation r tð Þ ¼ x tð Þ �~iiþ y tð Þ �~jj. Then, an object
part is defined to be a subset of the object curve whose
beginning and end points are one of the following: 1) The
beginning or the end of the object 2. 2) A point where the
second derivative r00 tð Þ is discontinuous. 3) A point where the
value of the determinant

C ¼ x0 tð Þ y0 tð Þ
x00 tð Þ y00 tð Þ

����
����

changes sign. The notion of an object part is crucial since, if
the artist(s) indeed used stencils, then, each time he placed
the stencil on the wall and drew a line, we consider he
created an object part.

2.3 Determination of the Object Parts in All
Thematic Units of the Wall Painting

In this section, mathematical methods are introduced for
the determination of the endpoints of each object part. This

is a crucial problem since, if the artist(s) used stencils to
draw the wall paintings, then he/they, each time, placed the
stencil on the wall and drew a concrete smooth line
following the stencil, generating in this way well-defined
object parts. Hence, if one wants to demonstrate that this
was indeed the case, then one must determine a limited
number of specific stencils that match the entire ensemble of
object parts well.

If Lo is the length of an arbitrary object, then we select an
appropriate small percentage of Lo, say Ls. Subsequently, in
order to spot points where there is a change of stencil
together with a change of concavity, we proceed as follows:
We divide all objects into consecutive pixel subsets of
length Ls, slightly overlapping in LOV pixels, and we
calculate the spline that best fits each such subset. In this
way, one obtains an ensemble of consecutive, slightly
overlapping splines Si; i ¼ 1; 2; . . . ; Ns, covering each object
(see Fig. 2a). Notice that all small gaps of the various objects
due to wear are bridged with this procedure. Good choices
for Ls and LOV are:

Ls ¼
0:15 � Lo½ �; Lo � 400 pixels

0:33 � Lo½ �; Lo < 400 pixels

�

Lov ¼
0:09 � Ls½ �; Lo � 400 pixels

0:18 � Ls½ �; Lo < 400 pixels;

�

where, for any x 2 R, ½x� stands for the integral part of x.
Neighboring values of Ls and LOV offer quite similar and
satisfactory results.

Next, one computes the possible turning points of the
splines Si and considers them as separation points of object
parts. The turning points are determined via the standard
method described in the object part definition Case 3 in
Section 2.2.

To examine the case where a change of stencil occurs
without change of concavity, we have proceeded as
follows: For each object part of length L, we consider all
its pixels naturally enumerated. For each such pixel i,
where Ls � i � L� Ls þ 1, we apply the following method
(see Fig. 2b):
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Fig. 1. Two female figures from the wall painting “Gathering of Crocus.”

Actual dimensions: (a) Height: 92.1 cm, width: 73.5 cm. (b) Height:

89.4 cm, width: 74.4 cm.

Fig. 2. Two elements corresponding to two objects and demonstration of
the approximation with polynomials in order to determine the object
parts. (a) Approximation of one object by a set of overlapping splines to
determine points where a change of concavity occurs. (b) Local
approximation of a subset of an object with third and fifth degree
polynomials in order to determine points where a probable change of
stencil occurs, without change of concavity.



. We consider the pixels of ordinal number from
i� Ls þ 1ð Þ up to i and we compute the third degree

polynomial (spline) Si best fitting them.
. We consider the pixels of ordinal number from i up

to iþ Ls � 1ð Þ and we compute the fifth degree
polynomial Fi best fitting them, where Fi has the
same value and the same first derivative with Si at
the center of pixel i.

When pixel i belongs to a specific object part, then, near pixel
i, both at its left and its right, one expects that the object line
will be described with the same functional form. Therefore,
near pixel i, polynomials Si and Fi that best fit this object line
must also have the second order derivatives similar. On the
other hand, when pixel i is a point where a change of stencil
occurs, one expects that, on the left and the right of this point,
the object line will be described with a different function.
Hence, one expects a relatively large discontinuity in the
value of the second derivative. Thus, applying the aforemen-
tioned procedure to all corresponding pixels of an object, one
may determine the points where a change of stencil occurs by
demanding that the second derivative ofSi andFi near idiffer
more than a threshold TS . It seems that a good estimate of TS
can be obtained as follows: Let �

ð2Þ
i be the difference of the

second derivative ofSi andFi at pixel i of an object and let� 2ð Þ

and � 2ð Þ be the mean value and standard deviation of these
�
ð2Þ
i . Since the pixels where a change of stencil occurs are far

fewer in number than the pixels belonging to object parts, the
value of �

ð2Þ
j at a point j where change of stencil occurs is

expected to be “many � 2ð Þ away from � 2ð Þ.” The performed
experiments indicate that the choice of Ts ¼ � 2ð Þ þ 3 � � 2ð Þ

offers a satisfactory determination of points where a change
of stencil occurs. Rarely, one obtains a few more than one
pixels, in which case, all these points are considered to be
potential object part end points. The final decision about the
exact point where a change of object part occurs is made by
application of the method introduced in Section 4.3.

We would like to emphasize that, although a very good
polynomial approximation of all objects can be achieved by
the aforementioned technique, it is clear that these poly-
nomials do not constitute stencils since their parameter
values greatly vary from an object part to another.

3 DEFINING A CLASS OF PLAUSIBLE STENCILS

The idea emerged among the authors that the artist(s) used
prefabricated geometric stencils to draw the wall paintings.
A first step to verify this conjecture is the determination of a
set of geometric shapes whose conception and construction
are not a priori prohibitive for the era, from an archae-
ological and historical point of view. For example, the linear
spiral and the hyperbola can be constructed with the use of
simple tools, even if this might require a considerable
amount of novelty for the era.

Thus, extensive archaeological and historical analysis led
to the conclusion that a set of geometric figures that could
have been conceived and constructed by this civilization,
are the following:

1. exponential spiral,
2. the spiral generated by unwrapping a thread around

a peg, usually called the involute of a circle,
3. the linear or Archimedes’ spiral,
4. the ellipse,

5. the parabola, and
6. the hyperbola.

A brief review of the mathematical history associated
with these geometric curves is given below: According to
various researchers [4], [6], [7], [9], [5], starting from Proclus
( ), geometry in Egyptians and Babylonians was,
even in Thales’ time, confined to an area computing stage
(“ ”), in other words, it was only an ensemble
of empirical rules for computing surfaces, frequently with
errors.

Concerning spirals, it is well-known that spiral shapes
appear in various prehistoric civilizations even centuries
before the prehistoric Thera civilization. There are infinitely
many types of spirals. Among them, the involute of a circle
and the exponential spiral are encountered in nature: The
involute of a circle can be easily generated in everyday life
events, while the exponential spiral can be found in various
cockleshells. Thus, it is not a surprising fact that rough
approximations of these two types of spirals are encoun-
tered quite early in various prehistoric civilizations.

On the other hand, the linear spiral seemingly does not
exist in nature. In classical age geometry, the concept of the
linear spiral is so far attributed to Konon ( ) from Samos
in the third century B.C. Next, in “On Spirals,” Archimedes
defines the linear spiral and gives many fundamental
properties and related theorems. For these reasons, the linear
spiral also bears Archimedes’ name [7], [9], [8], [6].

Concerning conics, it seems that the first who conceived
them and realized that they result from the intersection of a
cone with a plane was Menaichmos, around 350 B.C. The first
who wrote about conics is Euclid around 300 B.C. According
to Pappus (A.D. 320), “the four books of Euclid’s Conics, were
completed by Apollonius, who added four more books of
Conics” [7], [9], [8], [6]. The names of the three conics’ types
(ellipse, hyperbola, and parabola), as well as many compli-
cated theorems, are attributed to Apollonius.

3.1 General Spiral Equations

The general spiral equation is:

xð�Þ ¼ x0 þRð�Þ � cosð�ð�Þ � �0Þ;
yð�Þ ¼ y0 þRð�Þ � sinð�ð�Þ � �0Þ;

where x0; y0 are the coordinates of the spiral center, Rð�Þ is
any increasing function of �, and �ð�Þ is any function of �,
while �0 accounts for a probable rotation of the spiral. The
most celebrated spirals are the following, where their
equations are written so as to incorporate the case where
one deals with a part of the corresponding spiral that does
not necessarily start at � ¼ 0:

1. Archimedes’ spiral, namely, the one with

Rð�Þ ¼ k � �� �0ð Þ and �ð�Þ ¼ �� �0ð Þ;

where k is a constant.
2. The involute of a circle with radius r0, namely, the

spiral generated when a thread wrapped around a
peg is unwrapped. This spiral seems to be the
simplest one to draw.

R �ð Þ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �� �0ð Þ2

q
;

� �ð Þ ¼ �� �0ð Þ � arctan �� �0ð Þ:
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3. The exponential spiral satisfying: Rð�Þ ¼ a � e�� ���0ð Þ,
�ð�Þ ¼ �� �0ð Þ, where �; � are constants.

3.2 Ellipse and Hyperbola: Useful, Relevant
Characteristics

The general equation of a conic in Cartesian coordinates is:

Ax2 þBy2 þ CxyþDxþ Eyþ F ¼ 0;

A;B; C;D;E; F 2 R; and A2 þB2 þ C2 > 0:
ð1Þ

One usually defines the discriminant � ¼ 4 � A �B� C2 and,
as a consequence, if � > 0, the conic is an ellipse, if � < 0, the
conic is a hyperbola, and, if � ¼ 0, the conic is a parabola. If
one performs an appropriate rotation of the coordinate axes of
� radians moving to a new pair of coordinates (X, Y), then one
can zero the coefficient C of the cross term, in which case, one
obtains the well-known normal equations of the three types of
conics whose parameters are directly associated with their
geometric characteristics.

4 TESTING IF AN OBJECT PART CORRESPONDS TO

A STENCIL

4.1 Choosing the Proper Stencil for Each Object
Part and an Initial Estimation of Its Parameters

Consider a drawn object part whose digitized image
consists of NP pixels described by the sequence of vectors

rPi
�!

; i ¼ 1; 2; . . . ; NP ;

starting at a reference center and pointing to each pixel
center, where superscript P stands for part. Suppose that
one wants to test if this object part is the successful result of
an artist’s attempt to draw a geometrical prototype
described by the parametric vector equation

rM
�!

�j�ð Þ;

where � is the independent variable, � is the curve set of
parameters, and superscript M stands for model. For
example, for the linear spiral polar parametric equation,

rM
�!

� �jð Þ ¼ x0 þ k � �� �0ð Þ � cos �� �0 þ ’0ð Þð Þ~ii
þ y0 þ k � �� �0ð Þ � sin �� �0 þ �0ð Þð Þ~jj;

� 2 R is the independent variable (the polar angle) and � ¼
x0; y0; k; �0; �0f g is the spiral set of parameters.

Next, we compute the optimal set of parameters �o and
the corresponding sequence of values of the independent
variable �i, i ¼ 1; 2; . . . ; NP , so that

rM
�!

�ij�oð Þ

best fits rPi
�!

according to a chosen norm L. Algorithms to
achieve this are the well-known conjugate gradient or the
easier to implement Nelder-Mead method, starting from a
tentative set of values of � and letting � converge to �o so
that L is minimized. For example, for a given object part

rPi
�!

and a specific potential stencil described by rM
�!

, we
minimize the quantity

E2 ¼
XNP

i¼1

rPi � rMi
�� �� ¼XN

P

i

xPi � xMi
� �2þ yPi � yMi

� �2
	 


:

For all obtained object parts of each wall painting, we

have applied the aforementioned procedure, considering,

each time rM
�!

to be: Archimedes’ spiral, the involute of a

circle, the exponential spiral, and all three conics. In this

way, for each object part of the drawing and for each

potential stencil, we have obtained a set of corresponding

initial parameters that offer a first, not yet optimal,

minimum for the error. The nonoptimality is due to the

intrinsic ineffectiveness of the minimization procedure.

The relatively large number of curve parameters, as well

as the considerably large number of pixels NP of the

object part introduce a noticeable complexity in the

minimization procedure, which makes the employed

algorithm converge to a local minimum near the absolute

minimum but different from that. This occurs almost

always in practice, independently of the type of the

employed minimization algorithm. Thus, for each object

part of the wall painting in hand one can determine the

potential stencil corresponding to the minimum error

among the six error values computed with the aforemen-

tioned procedure. This minimum error prototype consti-

tutes a first candidate stencil, which the artist probably

used to draw the specific object part. The corresponding

optimal set of parameters is a first estimation of the

characteristics of this candidate stencil.

Notice that the Hough transform also offered quite rough

results in the attempt to determine the stencils and obtain a

first estimation of their parameters [18]. In general, the

problem faced in this paper is not a typical curve-fitting

problem like the ones tackled in [13], [14], [15], [16], [17]. On

the contrary, one can define the problem in hand as follows:

Try to figure out probable prototypes used by the artist(s) to

draw a specific painting, specify their primary parameters,

and establish the corresponding stencils used for drawing

the painting, with the maximum possible accuracy.

4.2 Stencil Confirmation and Optimization of Its
Parameters for Each Object Part

In this section, we will introduce a method in order to
irrevocably decide if the previously estimated minimum
error prototype indeed corresponds to the object part in
hand and, in addition, to obtain a more accurate estimation
of its parameters.

Thus, consider a potential stencil rM
�!

�ij�oð Þ, where �o is
the initial estimation of its parameters, as computed in
Section 4.1. We stress that, among these parameters, there is a
subset that determines the prototype form, while the
remaining parameters determine its position in the plane.
For example, k determines the form of the linear spiral, ro the
exact shape of the involute of a circle, �; � the form of the
exponential spiral, a; b the shape of ellipse or hyperbola, and
a; b; c the parabola form. We will refer to these parameters
with the name “primary parameters” of the prototype.

Next, for each of the six potential stencils with optimal
primary parameters �o

p, one defines a subdomain around the
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�o
p values in order to achieve the optimal estimation of these

values in this subdomain. For clarity, we will construct this
subdomain in a specific example case first: In fact, suppose
that the potential stencil in hand is a hyperbola with initially
estimated optimal primary parameters ao, bo. Next, we define
two intervals around them: ao � 1� pað Þ; ao � 1þ pað Þ½ � and
bo � 1� pbð Þ; bo � 1þ pbð Þ½ �, where pa, pb are properly chosen

factors. All performed experiments indicate that a very
satisfactory choice for the present application is pa ¼
pb ¼ 0:25. Moreover, one defines a partition of these intervals
to obtain two sequences Ia, Ib of Ka and Kb points,
respectively, such that ao 2 Ia and bo 2 Ib. Subsequently, via
the Cartesian product Ia � Ib of these sequences, we obtain
Ka �Kb values of the corresponding hyperbola primary
parameters.

Each pair ðIa�; Ib�Þ, corresponds to a specific prototype
hyperbola to which the object part in hand must fit
optimally. To achieve this optimal fitting, the following
lemmas will prove useful:

Lemma 1. Consider two discreteN-point curves in the same plane,
say ðxi; yiÞ and ðPi;QiÞ, with arbitrary orientation. Suppose
that one wants to estimate the optimum rotation angle � and
optimal translation ðx0; y0Þ so as to fit curve ðxi; yiÞ to curve
ðPi;QiÞ in the Least Squares sense. Equivalently, if ðXi; YiÞ is
the result of the rotation and translation of curve ðxi; yiÞ, we
demand quantity E02 ¼

P
alli f Xi � Pið Þ2þ Yi �Qið Þ2g to be

minimum. After setting the corresponding partial derivatives to
zero and some calculus, one obtains:

x0 ¼
1

N
�
XN
i¼1

ðPi � 	xiÞ; y0 ¼
1

N
�
XN
i¼1

ðQi � 	yiÞ;

tanð�Þ ¼

PN
i¼1

ðxi � 	Qi � yi � 	PiÞ

PN
i¼1

ðxi � 	Pi þ yi � 	QiÞ
;

where 	xi ¼ �yi � sinð�Þ þ xi � cosð�Þ, 	yi ¼ yi � cosð�Þ þ xi �
sinð�Þ, 	Pi ¼ 1

N

PN
j¼1 Pj � Pi, and 	Qi ¼ 1

N

PN
j¼1 Qj �Qi.

Lemma 2. Now, in order to fit a given object part of L pixels
ðxi; yiÞ to the best position of a model potential stencil, one
proceeds as follows:

1. Frequently, the L pixels of the object part as obtained by
the segmentation method are very dense and misplaced
so that it is very difficult to achieve one-to-one
correspondence between these pixels and points of the
potential stencil. To circumvent this difficulty, we
choose N pixels of the object part so that two successive
pixels are separated by a small number of object part
pixels, say three or four. In the following, when we refer
to the N-pixel object part, we mean the aforementioned
subset of the object part pixels. Subsequently, one
computes the Euclidean distance of all pairs of successive
object part pixels; we let dPj be the Euclidean distance
between the jth and the jþ 1th pixels of the object part
andD M;�ð Þ be the Euclidean distance between any two
points M and �.

2. Consider an arbitrary potential stencil with indepen-
dent variable t. Then, one creates a set of points
belonging to the potential stencil, starting at t0 and
ending at te, being as dense as possible. In other words,

one first generates a sequence of points of the potential
stencil Ps tið Þ, ti 2 t0; te½ �, such that two successive
points have a very small distance, much smaller than
the pixel dimensions.

3. For each point n of the sequence Ps tið Þ, one creates an
N-vertices polygonal line (poly-line) starting at the
point Ps tnð Þ in hand, which we call Mn

1 , where its
subsequent vertices are defined as follows:
The second vertex Mn

2 is the point Ps tkð Þ, for which
the following relations hold:

D Ps tkð Þ;Mn
1

� �
� dP1 ; D Ps tk�1ð Þ;Mn

1

� �
< dP1 ; ð2Þ

D Ps tkð Þ;Mn
1

� �
� dP1 � dP1 �D Ps tk�1ð Þ;Mn

1

� �
: ð3Þ

Clearly, if inequalities (2) hold, whileD Ps tkð Þ;Mn
1

� �
�

dP1 > dP1 �D Ps tk�1ð Þ;Mn
1

� �
, then Mn

2 ¼ Ps tk�1ð Þ.
Next, the Mn

j vertex is inductively defined via the

analogous relations:

D Ps tkð Þ;Mn
j�1

	 

� dPj�1; D Ps tk�1ð Þ;Mn

j�1

	 

< dPj�1:

If

D Ps tkð Þ;Mn
j�1

	 

� dPj�1 � dPj�1 �D Ps tk�1ð Þ;Mn

j�1

	 

;

then Mn
j is Ps tkð Þ, else if

D Ps tkð Þ;Mn
j�1

	 

� dPj�1 > dPj�1 �D Ps tk�1ð Þ;Mn

j�1

	 

;

then Mn
j is Ps tk�1ð Þ.

4. For all n, we apply Lemma 1, where ðxi; yiÞ are the
coordinates of the center of the N pixels belonging to the
object part in hand, while ðPi;QiÞ are the coordinates of
the model vertices Mn

1 ;M
n
2 ; . . . ;Mn

N . In this way, for
each point Ps tnð Þ of the specific potential stencil, one
obtains an error En

2 describing the way the object part
best fits to the specific model poly line. Clearly, the
minimization of En

2 , for all points Ps tnð Þ for which the
model poly line can be constructed, offers the position,
i.e., the value ofn in which the object part in hand best fits
the specific potential stencil. The corresponding mini-
mum value of En

2 is a measure of the goodness of fit of
these two sets of points.

At this point, we can unambiguously compute the angle
of rotation and parallel translation that one must apply to
the sequence of points ðxi; yiÞ belonging to the specific object
part so that it best fits the potential stencil with primary
parameters ðIa�; Ib�Þ by direct application of Lemmas 1 and 2.
This procedure will also furnish the corresponding mini-
mum average error "�;� as well as the exact fitting position.

The minimum "�;� value for all pairs of primary
parameters ðIa�; Ib�Þ offers a better and far more reliable
estimation of the optimal primary parameters of the stencil
in hand.

Recursive application of this procedure using subdo-
mains of continually smaller size and continually better
refinement of the corresponding intervals Ia; Ib offers
convergence to optimal primary parameters of the con-
sidered potential stencil.

An analogous procedure to the aforementioned one is
applied to the other five potential stencils, too, in order to
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associate with each object part and each potential stencil the
best fitting parameters and the corresponding minimum
error, which is an actual measure of the way the specific
potential stencil best fits the object part in hand. In this way,
one associates six fitting error values with each object part
and six corresponding sets of best fitting parameters.

For all object parts, there is a clear-cut minimum among
the six best fitting error values; we consider that the
prototype corresponding to this minimum error is the type
of stencil the artist(s) employed to draw the corresponding
object part c.1650 B.C.

We stress that, for all object parts of the celebrated wall
painting of “Gathering of Crocus,” the minimum error
occurred only for three types of stencils: hyperbolas, ellipses,
and linear spirals. This means that the artist(s) used stencils
corresponding only to these three types of curves.

4.3 Determining the Set of Stencils Used for
Drawing the Wall Paintings

First, we classify all object parts according to if they best fit
to a hyperbola or to an ellipse or to a linear spiral. One
expects that the artist(s) used a limited number of stencils to
draw the wall paintings. On the other hand, let as suppose
that two object parts were drawn using the same stencil, say
a hyperbola, with primary parameters a1; b1. If one applies
the methodology introduced in Sections 4.1 and 4.2 to these
two object parts, then one will obtain two different pairs of
primary parameters of the best fitting hyperbola close to
a1; b1 but different from them, in general. This discrepancy
is most probably due to slight random movements of the
paintbrush, the variable line width, the wear the wall
paintings have suffered, the finite images resolution, etc.

Therefore, special effort should be made in order to
determine the number of different stencils the artist used, as
well as a consistent estimation of the primary parameters of
these stencils. In order to achieve that, we proceed as follows:

Consider first all object parts corresponding to the
hyperbola stencil, as deduced in Section 4.2. In the
ða; bÞ plane, one places all primary parameters of the best
fitting hyperbola to each object part separately. In this way,
one obtains four disjoint sets of points, where each set
consists of adjacent points. It is logical to assume that each
such set corresponds to a different hyperbola stencil. LetN1,
N2,N3, andN4 be the number of points of each set; we stress
once more that each such point corresponds to a specific
object part and to the pair of the hyperbola primary

parameters best matching to it. In order to estimate the
parameters of each one of the four stencils, we proceed as in
Section 4.2.

For each one of the four sets, we define a rectangular
region containing all points of the set and then we
define a dense partition Ia � Ib of this region. For each
partition point ðIa�; Ib�Þ, one computes the aggregate error

agg�;�¼

PN1
j¼1 "

j
�;�, where "j�;� is the average error of

approximation of the jth object part by the hyperbola
with primary parameters ðIa�; Ib�Þ. The minimum of these
aggregate errors for all partition points ðIa�; Ib�Þ is
considered to define the final primary parameters of
the first hyperbola stencil. Similarly, one can calculate
the final primary parameters of the other three hyperbola
stencils.

Proceeding along similar lines, one can demonstrate that
there are two different elliptical stencils and one can
estimate their final primary parameters.

The linear spiral case is similar and actually simpler since
there is only one primary parameter, k. The related analysis
shows that there is a large class of object parts corresponding
to a single linear spiral stencil. All seven of these stencils are
shown in Fig. 3, plotted in their characteristic color.
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Fig. 3. The seven stencils that presumably have made the wall painting “Gathering of Crocus” shown in Fig. 1 and Fig. 2. All axes are scaled in

centimeters. (a) The linear (Archimides’) spiral, always in red. (b) Ellipse 1 in yellow and ellipse 2 in purple. (c) Hyperbola 1 always in magenta,

hyperbola 2 always plotted in green, hyperbola 3 in blue, and hyperbola 4 always in cyan.

TABLE 1
The Primary Parameters of the Seven Stencils,

Together with the Colors Associated with
Each Stencil in Figs. 3, 4, 5, 6, 7, and 8



By applying the method introduced in Section 4.2, we
have fit all lines of the women figures appearing in
“Gathering of Crocus” to the obtained set of stencils, with

an exceptionally low error. This error is estimated as the
distance of the contour pixels centres of each object part from
the matching geometric prototype curve. In fact, Table 2

shows the way a number of long object parts is approximated
by the stencils; we stress that these errors are essentially the

larger ones. The overall approximation error of all object
parts is around 3:3 � 10�4m or, equivalently, of a millimeter
per pixel, while the overall standard deviation is 0.54.

In addition, we would like to point out that 76 object parts
have been generated by the linear spiral prototype always
plotted in red, 35 by hyperbola 1 shown in magenta, seven by
hyperbola 2 always in green, 15 by hyperbola 3 always in
cyan, 16 by hyperbola 4 always in blue, two by ellipse 1
always in yellow, and, finally, 11 by ellipse 2 always in purple.
Overall, there are 90 stencil realizations in the female motif of
Fig. 5 and 72 in the female motif of Fig. 6. It might be
intuitively evident that the longer the stencil part correspond-
ing to a specific object part, the greater the probability that the
corresponding contour indeed matches to this prototype.
However, a rigorous treatment of this statement is well
outside the scope of the present paper and, consequently, it
will be attempted in another one. In any case, employing the
aforementioned results, one may confirm the statistical
hypothesis that the object parts indeed correspond to the
proper stencils; the details of this confirmation are not
included here for reasons of brevity. Using the final primary
parameters of each stencil, as well as a maximum allowed
error of discrepancy between the object part and the
corresponding stencil, we have confirmed or irrevocably
defined the limits of each object part.

4.4 The Most Probable Method of Drawing the
Considered Wall Paintings

The particularly low fitting error between stencils and the
corresponding objects parts strongly supports the hypothesis
that the artist(s) indeed used the estimated seven stencils to
draw this wall painting. In other words, the artist(s) had these
prefabricated geometric curves at his disposal and used one
of them each time as a guide to draw the lines, which, in this
paper, are described as object parts. With artfulness, the
artist(s) succeeded in obtaining smooth line continuation at
the points where change of the stencil or of its positioning on
the wall occurred. We emphasize that the artist(s) did not use
the entire stencil each time, but, instead, he/they used the
part of the corresponding stencil he/they considered most
suitable. Fig. 4 shows the ensemble of object parts matching to
hyperbola 1, drawn in black, as well as their positioning on
the prototype. In general, the average length of the employed
seven stencil subsets is around 6 cm.

One plausible explanation for the employment of this
method is that, in this way, the artist(s) achieved a particularly
steady line of the drawn objects and speed of execution, which
is frequently crucial for the fresco technique.

The validity of the aforementioned statements is also
demonstrated in Figs. 5 and 6 where each one of the seven
stencils approximating the corresponding object part is
shown by a different color. The remarkable precision with
which the specific stencils fit the corresponding line contours
is shown in Figs. 7 and 8, depicting details extracted from the
wall paintings in hand.

Moreover, we would like to point out that the existence of
four different hyperbola stencils, as well as of two different
ellipse stencils indicates that these geometric curves have not
been drawn and constructed nor accidentally either by hand.
On the contrary, the appearance of the same functional forms
with different parameters practically proves that a person or a
group of people had a concrete method of constructing these
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TABLE 2
Indicative Values Manifesting the Way in Which the

Stencils Match the Corresponding Objects Parts

The term “error” stands for the Euclidian distance of the proper contour
part from the corresponding stencil; it is measured in millimeters. The
values inside parentheses are the corresponding mean error and
standard deviation when the wall paintings wear is neglected.



forms almost 1,300 years before their foundation is reported
in the classical ages.

In addition, the fact that the various object parts
approximate the seven aforementioned geometric curves
(stencils) with impressive precision strongly indicates that
there was a very neat and precise method of drawing these
geometric figures and constructing the corresponding
stencils. One cannot exclude that the method of drawing
these curves was a geometric one.

Finally, the method of drawing the wall painting
described in this paper seems to be unique in the history
of arts. The construction of precise, advanced for the era,
geometric stencils and their subsequent use in order to
depict beautiful figures and motifs requires a remarkable
sense of regularity, proportionality, symmetry, and geome-
try. The fact that this aptness emerged in the Late Bronze
Age civilization of Thera c. 3,700 years ago makes the whole
subject even more impressive.

4.5 Confirmation that a Set of Wall Paintings Was
Drawn by Hand and Not by Stencils

In order to demonstrate the antithesis of paintings drawn by
hand on one side and those drawn with the use of guides
(stencils) on the other, we looked for other wall paintings
that intuitively gave us the feeling they were handmade.
These wall paintings, shown in Fig. 9 and called “Ikria,” are
of similar dimensions to the “Gathering of Crocus” and
initially decorated the walls of rooms 4 and 4b of the “West
House.”

A first step toward proving the conjecture that the “Ikria”
are handmade is to exclude the case that there are noticeable
and consistent repetitions of contour lines in them. In fact,

consider the three entire “sinusoidal” arcs belonging to this
wall painting, shown in Fig. 9. We considered each of these
arcs as an independent model say, A1, A2, A3. Next, we
applied the Hough transform three times, once for each
model, looking for patterns identical to it or to any of its
subparts of length 4 cm or more. Hough’s transform has
shown the following:

1. The arcs were by no means repeated as a whole.
2. A very limited number of subparts of one arc, say

A1, have been spotted in the other arcs.
3. The length of these common subparts of A1, A2, A3

never exceeded 5.5 cm.
4. The common subparts could not cover the full length

of the arcs nor even a noticeable portion of them.

We repeated the aforementioned procedure using as a
model the mirrored versions of these arcs and all results
were analogous.

On the contrary, when the aforementioned approach was
applied to the wall paintings of Fig. 1, a large number of
contour parts of length greater than 5 cm appearing in these
figures was verified. Certain of these repetitions were of
considerable length (e.g., see the table repetitions in Table 2):
For example, consider the lady’s hunch in Figs. 1b and 6.
Ignoring the exact form of the stencils for a moment, we have
considered this object part, as it resulted from the segmenta-
tion process, to be a model discrete curve, say H. When the
Hough transform was applied to the images of Fig. 1, usingH
as a prototype, and once more looking for realizations of
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Fig. 4. Hyperbola 1 in black with a large number of object parts it

optimally matches placed on it exactly. The object parts are shown in

gray. Here, both a two-dimensional and a pseudo-three-dimensional

representation are shown.

Fig. 5. Demonstration of the excellent way the geometric stencils
described in the paper approximate the corresponding object parts of
the female motif depicted in Fig. 1a. Each color corresponds to a different
stencil, as indicated in Fig. 3 and Table 1. Concisely: 1) magenta, blue,
green, and cyan are hyperbolas of different primary parameters each,
2) yellow is an ellipse of different primary parameters than the purple one,
and 3) red is a single linear spiral. Notice that identical colors in Figs. 3, 4, 5,
6, 7, and 8 correspond to the same stencils.



length greater than 5 cm, then the vast majority of the
corresponding object parts shown in magenta in those two
figures were spotted. However, Hough’s transform seems to
offer inferior results to those obtained with the use of the
methodology proposed in this paper. A detailed comparison
of these two and other related methods will be attempted in
another paper. However, we can briefly state here that the
method introduced in this paper seems to manifest the
following advantages:

1. It offers particularly good subpixel approximation.
2. It is faster, at least for the present application and

analogous ones.
3. It is far less sensitive, if at all, to the initial conditions

than the classical minimization algorithms.
4. It does not manifest essential finite precision error;

we stress that the analytic least squares method
greatly suffers from this type of error, at least for the
application in hand.

After showing that there are no repetitions in the “Ikria”
wall paintings of Fig. 9, we proceeded to apply the
methodology introduced in this paper in order to test if
the six types of prototype curves referred to in Section 3, i.e.,
the three types of spirals and the conics, appear in these
wall paintings, too. Consequently, we have obtained the
following results: 1) All object parts were tested against all
six models, with particularly poor matching results. The
corresponding approximation errors were considerably
greater than the mean error encountered in the “Gathering
of Crocus.” 2) No single stencil of the types examined has
been found to repeatedly approximate object parts of the
arcs, even in the aforementioned poor sense.
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Fig. 6. Demonstration of the excellent way the geometric stencils
described in the paper approximate the corresponding object parts of
the female motif depicted in Fig. 1b. Each color corresponds to a different
stencil as indicated in Fig. 3 and Table 1. Concisely, 1) magenta, blue,
green, and cyan are hyperbolas of different primary parameters each,
2) purple is an ellipse of different primary parameters than the purple one,
and 3) red is a single linear spiral. Notice that identical colors in Figs. 3, 4, 5,
6, 7, and 8 correspond to the same stencils.

Fig. 7. Detail extracted from Fig. 5 in order to demonstrate the excellent

way in which the geometric stencils correspond to the object parts. The

same convention with Figs. 3, 4, 5, 6, 7, and 8 concerning colors holds.

Fig. 8. Detail extracted from Fig. 6 in order to demonstrate the excellent

way in which the geometric stencils correspond to the object parts. The

same convention with Figs. 3, 4, 5, 6, 7, and 8 concerning colors holds.

Fig. 9. The wall painting “Ikria” that almost definitely was drawn by

freehand without use of stencils.



5 CONCLUSION

In the previous analysis, a general method was introduced
that can provide strong supporting evidence that an artist or a
group of artists have used a number of stencils corresponding
to specific prototypes in order to draw a painting. The first
step of the methodology consists of determining the so-called
drawn elements, objects, and object parts. Next, a set of
potential geometric stencils not a priori excluded by the
civilization level of the era is spotted. A method for testing if
each object part corresponds to one of these stencils is
presented. Subsequently, an algorithm that provides an
objective method for estimating the number of stencils used
and their precise primary parameters is introduced. Applica-
tion of this method to the celebrated 1650 B.C. wall painting
“Gathering the crocus,” unearthed in the Akrotiri excavation
on the Greek island of Thera, indicates that this wall painting
has been drawn via the use of seven geometric stencils. Thus,
four different hyperbolae, two different ellipses, one linear
(Archimedes) spiral, and seven corresponding very well
constructed stencils, have been most probably used for
drawing this wall painting. This method of drawing the wall
paintings seems to be unique in the history of arts and of great
importance for archaeology and the history of science, too.
The use of precise geometric prototypes and corresponding
stencils for drawing beautiful motifs and figures reveals a
remarkable sense of regularity, proportionality, symmetry,
and geometry.
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