Parallelization Primer

by
Christian Bienia
March 05, 2007

What is Parallelization?

Answer: The creation of a new
algorithm!

* Trivial case: Run sequential algorithm on
multiple CPUs, throw locks around shared data

* Common case: Rewrite & extend parts of
sequential algorithm

* Hard case: Rewrite program from scratch

So how does it work?

Refinement \

Take Sequential
Program

Find & Analyze
Bottlenecks

Find Hot Spot

\\s

Parallelize
code

Metrics

Speedup Sp =T/ Tp

ldeal Speedup Sp =p

Parallel Efficiency Ep = Sp /P

Preparation

Choosing a Sequential Program

* Not all programs can be parallelized

~ Example: Some cryptographic programs

* Must be CPU bound
* Well-written programs make your life easier

* You already made this step

Finding the Hot Spot: Profiling

* Use a profiler like gprof to find the hot spot

* Remember Amdahl's Law:

edup

mpe

12

10

Andahl’ = law:

Parallel speedup vs. Sequentizal fraction

——
—=—1.
—— 0.5
i

You need at least 99.9%
of the program runtime!

Preparing your program

Compile & link all files of your program with
profiling support:

gcc -03 -g -pg prog.c -0 prog

WARNING: gprof doesn't work correctly with
multi-threaded programs. Details & Workaround:

http://sam.zoy.org/writings/programming/gprof.ntml

WARNING 2: Even then, improper parallelization
can give you distorted timing results!

http://sam.zoy.org/writings/programming/gprof.html

Using gprof

* Run your program with typical input:

./prog 40
Result: N! = 18376134811363311616

* Run gprof on program & profile data file

(gmon.out):

gprof prog

Profiling Example: N!

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

/* Compute n! */

uint64 t factorial(uint64 t n) ({
if(n <= 1) return 1;
return n * factorial(n - 1);

}

int main(int argc, char **argv) {
int i, n;
uint64 t fac;

n = atoi(argv[l]);

for (i=0; i<1000000; i++) fac = factorial(n);
printf("Result: N! = $"PRIu64"\n", fac);
return O;

Output of gprof (Excerpt)

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 5.20% of 0.19
seconds

index % time self children called name
<spontaneous>
[1] 73.7 0.01 0.13 main [1]
0.13 0.00 1000000/1000000 factorial [2]
38000000 factorial [2]
0.13 0.00 1000000/1000000 main [1]
[2] 68.4 0.13 0.00 1000000+38000000 factorial [2]
38000000 factorial [2]
<spontaneous>

[3] 26.3 0.05 0.00 frame dummy [3]

Limitations of gprof

* Profiling multi-threaded programs can give you
misleading results

* Results depend on chosen input

* Need to compile all code with profiling support
to get accurate results — What about shared
libraries?

* Profiling information limited by sampling
granularity

Parallelization

Why is Parallelization hard?

* Magnitude: Timing-related issues in addition to
sequential logic errors

* Determinism: Parallel programs are non-
deterministic

* Expression: Data synchronization separate
from data

* Biology: Humans can't think concurrently

What to do about 1t?

* You must work systematically and with
methodology

* You must get it right the first time (or at least as
much as possible)

* Hacking won't work

* Search for previous work on parallelization of
your algorithms

Synchronization

Accesses to shared data which is updated
during parallel phase must be synchronized.

* Best approach is to eliminate need for
synchronization!

* Synchronization is expensive: Try to defer and
aggregate updates

Shared Data

* Possible locations of shared data:

— Global variables
— Static variables in functions

~ Heap allocated data (shared pointers)

* Use good engineering to add locks:

struct {

int count;

void *list;

pthread mutex t list mutex;
} shared list;

Pthreads - You already know...

* Mutexes

* Condition variables

* MESA-style monitors:

pthread mutex lock(&mutex);

while (!cond) {
pthread cond wait (&condvar, &mutex);

}

do work();
pthread cond signal(&other cond);

pthread mutex unlock(&mutex);

Pthreads — But there's more!

* Barriers: Wait for specified number of threads
* Rwlocks: Concurrent reads & sequential writes
* Spinlocks: Don't block, spin (for short waits)

* Trylocks: Don't block, return result of lock
operation immediately

* Timed locks: Try to acquire lock, but only walit
up to specified amount of time

Deadlocks

Four necessary conditions for deadlocks:

Mutual Exclusion

Hold and Wait

* No Preemption

Circular Wait

Deadlock Avoidance

* You need a locking protocol

* Define a partial order on locks:

Iock1 <, Iock2 <, Ioc:k3 <, - <y Ioc:kN

* Acquire locks only in this order (no circular wait)

* Deadlocks are a symptom of poorly designed
software

Race Conditions

* You forgot to synchronize accesses to shared
data

* Non-deterministic, can be very hard to find

* Tool for automatic detection: helgrind (part of
Valgrind tool suite, see http://www.valgrind.org/)

http://www.valgrind.org/

helgrind Overview

* Uses Eraser algorithm: Stefan Savage et al.
“Eraser: A Dynamic Data Race Detector for
Multithreaded Programs”

* Usage:

valgrind --tool=helgrind ./race

* Unavailable in Valgrind release 2.4 and later,
use an older version

Data Race Example

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>

void *threadx(void *arg) {
int i;
for (i=0; i<10; i++) { printf("x"); sleep(l); }

}

void *thready(void *arg) {
int i;
for (i=0; i<10; i++) { printf("o"); sleep(l); }

}

void main() {
pthread t tx, ty;
pthread create(&tx, NULL, &threadx, NULL);
pthread create(&ty, NULL, &thready, NULL);
pthread join(tx, NULL);
pthread join(ty, NULL);
printf ("\nCounter: %i\n", counter);

Output of helgrind (Excerpt)

==25878== Helgrind, a data race detector for x86-linux.

==25878== Copyright (C) 2002-2004, and GNU GPL'd, by Nicholas Nethercote et
al.

==25878== Using valgrind-2.2.0, a program supervision framework for x86-
linux.

==25878== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward et al.
==25878== For more details, rerun with: -v

==25878==

==25878== Thread 3:

==25878== Possible data race writi iable at 0x80497CS8
==25878== at 0x8048500L thready (race.c:14

==25878== by O0x1D4AFCDA: threaa_wrapper (vg_libpthread.c:867)
==25878== by 0xBOOOF714: do_ quit (vg_scheduler.c:1872)

==25878== Address 0x80497C8 is in BSS section of
/n/fs/grad/cbienia/course/race/race
==25878== Previous state: shared RO, no locks

XOXOXOXOXOXO0OX0OX0OX0OXO0
Counter: 20

==25878== ERROR SUMMARY: 11 errors from 11 contexts (suppressed: 5 from 2)
==25878== 16 possible data races found; 0 lock order problems

Limitations of helgrind

* False negatives (not all data races will be
detected)

* False positives (lots of output)

* Only supports x86 processors

Refinement

Refining Synchronization:
pthreadw

* pthreadw is a thread library wrapper

* Collects synchronization statistics during
runtime

* No recompilation required, but recommended

* Usage:

pthreadw ./prog

* Author of pthreadw Is talking to you right now

Speedup

65
60
55
50
45
40
35
30
25
20
15
10

Hot Lock Example

Number of CPUs

I e —
// N
\ \ \ \ \ \ |
16 24 32 40 48 56 64

® Linear

¥ Program

Output of pthreadw (Excerpt)

[pthreadw] Mutex functions:

[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]
[pthreadw]

Uses: - 0.0% as N/A in im init() (i

g mutex lock:

number of calls 23317786
blocking rate 15.54%

total elapsed time 2.0 074436 ns
share of total CPU time

time per call (mean) 141075.9 ns
share of thread lifetime (mean) 66.36%

Mutex variables:

Name / Addr Time [ns Uses Contention
0x6000000000021350 3104207952264@ 800764
m- .c:133)
- 0.0% as im->sslock in im call stop() (region.c:139)
- 0.0% as im->sslock in im_ call stop() (region.c:141)
- 20.0% as im->sslock in im buffer unref() (buffer.c:65)

- 20.0% as im->sslock in im buffer unref() (buffer.c:111)

- 20.0% as im->sslock in im buffer ref() (buffer.c:214)
- 20.0% as im->sslock in im buffer ref() (buffer.c:225)
- 0.0% as im->sslock in im call start() (region.c:112)
- 0.0% as im->sslock in im call start() (region.c:114)
as im->sslock in im buffer done() (buffer.c:122)

as im->sslock in im buffer done() (buffer.c:128)

|
O O
O O
o\°

o\°

Speedup

65
60
55
50
45
40
35
30
25
20
15
10

Result of Hot Lock Elimination

24 32 40

Number of CPUs

48

56

64

® Linear

¥ Program

Limitations of pthreadw

* Only detects issues related to synchronization
* Slows down program
* Might affect thread schedule

* Does not detect non-standard forms of
synchronization

Other Reasons for Bad Scalability

* Incomplete list, in no particular order:

~ Program becomes |/O bound

~ Program becomes memory bound
— Thrashing

~ More spinning

~ Increasing number of cache misses

Instrumentation

* Instrument your source code to find bottlenecks
* You need a timer with very high precision.
* Recommendation: clock gettime()

* Touse clock gettime(), you have to
#include <time.h> and link with librt
(-1lrt)

* Store counter values in uint64 t from
inttypes.h

Thank you!

