
Shared Memory Multiprocessors

2

Shared Memory Multiprocessors

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

3

Example Cache Coherence Problem

Processors see different values for u after event 3
With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when

Processes accessing main memory may see very stale value
Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

1
2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

4

A Coherent Memory System: Intuition

Reading a location should see
The latest value written by any process

On uniprocessors
No issues between processes
Coherency between DMA operations and processor
caches

Multiprocessors
Coherent as if the processes were interleaved on a
uniprocessor

5

Problems with the Intuition

Value returned by a read should be last value written
But, “last” is not well-defined

In sequential case, last defined in terms of program
order, not time

Order of operations in the machine language presented
to processor

In parallel case, program order defined within a
process

Need to make sense of orders across processes

6

Some Basic Definitions

Memory operation: a single read (load), write (store) or read-
modify-write access to a memory location

Assumed to execute atomically with respect to each other
Issue: a memory operation issues when it leaves processor’s
internal environment and is presented to memory system
(cache, buffer …)
Perform: operation appears to have taken place, as far as
processor can tell from other memory operations it issues

A write performs with respect to the processor when a subsequent
read by the processor returns the value of that write or a later write
A read perform with respect to the processor when subsequent
writes issued by the processor cannot affect the value returned by
the read

In multiprocessors, stay same but replace “the” by “a” processor
Also, complete: perform with respect to all processors
Still need to make sense of order in operations from different
processes

7

Sharpening the Intuition

Imagine a single shared memory and no caches
Every read and write to a location accesses the same physical location
Operation completes when it does so

Memory imposes a serial or total order on operations to the location
Operations to the location from a given processor are in program order
The order of operations to the location from different processors is some
interleaving that preserves the individual program orders

“Last” now means most recent in a hypothetical serial order that maintains
these properties
For the serial order to be consistent, all processors must see writes to the
location in the same order (if they bother to look, i.e. to read)
Note that the total order is never really constructed in real systems

Don’t even want memory, or any hardware, to see all operations
But program should behave as if some serial order is enforced

Order in which things appear to happen, not actually happen

8

Formal Definition of Coherence

Results of a program: values returned by its read operations
A memory system is coherent if the results of any execution of
a program are such that each location, it is possible to
construct a hypothetical serial order of all operations to the
location that is consistent with the results of the execution and
in which:

1. operations issued by any particular process occur in the order
issued by that process, and

2. the value returned by a read is the value written by the last
write to that location in the serial order

Two necessary features:
Write propagation: value written must become visible to
others
Write serialization: writes to location seen in same order by
all

• if I see w1 after w2, you should not see w2 before w1
• no need for analogous read serialization since reads not visible to

others

9

Potential Hardware Coherency Solutions

Snooping Solution:
Send all requests for data to all processors
Processors snoop to see if they have a copy and respond
accordingly
Requires broadcast, since caching information is at processors
Works well with bus (natural broadcast medium)
Dominates for small scale machines (most of the market)

Directory-Based Schemes
Keep track of what is being shared in a centralized place
(logically)
Distributed memory ⇒ distributed directory for scalability
(avoids bottlenecks)
Send point-to-point requests to processors via network
Scales better than Snooping
Idea existed before Snooping-based schemes

10

Bus Snooping Topology

Memory: centralized with uniform access time (UMA)
and bus interconnect
Early examples: Firefly, Encore, Sequent, …
Current example: Unisys

Processor

L1
L2

BUS

Processor

L1
L2

Processor

L1
L2

Memory I/O
Adaptor

I/O Bus

I/O I/O

11

Basic Snoopy Protocols

Write Invalidate Protocol
Multiple readers, single writer
Write to shared data: an invalidate is sent to all caches
which snoop and invalidate any copies
Read Miss:

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copy

Write Broadcast Protocol (typically write through):
Write to shared data: broadcast on bus, processors
snoop, and update any copies
Read miss: memory is always up-to-date

Write serialization: bus serializes requests!
Bus is single point of arbitration

12

Basic Snoopy Protocols

Write Invalidate versus Broadcast:
Invalidate requires one transaction per write-run
Invalidate uses spatial locality: one transaction per
block
Broadcast has lower latency between write and read

Early write invalidate examples
Encore and Sequent systems

Early broadcast examples
DECSRC’s firefly
Xerox PARC Dragonfly

13

An Example Snoopy Protocol

Invalidation protocol, write-back cache
Each block of memory is in one state:

Clean in all caches and up-to-date in memory (Shared)
OR Dirty in exactly one cache (Exclusive)
OR Not in any caches

Each cache block is in one state (track these):
Shared : block can be read
OR Exclusive : cache has only copy, its writeable, and
dirty
OR Invalid : block contains no data

Read misses: cause all caches to snoop bus
Writes to clean line are treated as misses

14

Snoopy-Cache State Machine-I

State machine
for CPU requests
for each
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

15

Snoopy-Cache State Machine-II

State machine
for bus requests
for each

cache block
Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

16

Place read miss
on bus

Snoopy-Cache State Machine-III

State machine
for CPU requests
for each
cache block and
for bus requests
for each

cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory
access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

17

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Processor 1 Processor 2 Bus Memory

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

18

Example: Step 1

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.
Active arrow = Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

19

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

20

Example: Step 3

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
A1

CPU Write Miss
Write Back

CPU Read Miss

21

Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
A1
A1

CPU Write Miss
Write Back

CPU Read Miss

22

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

A1
A1
A1

CPU Write Miss
Write Back

CPU Read Miss

23

Snooping Cache Variations

Berkeley
Protocol

Owned
Exclusive

Owned Shared
Shared
Invalid

Basic
Protocol

Exclusive
Shared
Invalid

Illinois
Protocol
Private Dirty

Private
Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI
Protocol

Modfied (private,!=Memory)
Exclusive

(private,=Memory)
Shared (shared,=Memory)

Invalid

24

Remote
Read
Place Data
on Bus?

Snoop Cache Extensions

Extensions:
Fourth State:
Ownership

Remote
Write

or Miss due to
address conflict

Write back block

Remote Write or
Miss due to

address conflict
Invalid

Shared
(read/only)

Modified
(read/write)

CPU Read hit

CPU Read

CPU Write
Place Write
Miss on bus

CPU Write

CPU read hit
CPU write hit

Exclusive
(read/only)

CPU Write
Place Write
Miss on Bus? CPU Read hit

Remote Read
Write back
block

Shared-> Modified,
need invalidate only
(upgrade request), don’t
read memory
Berkeley Protocol
Clean exclusive state (no
miss for private data on
write)
MESI Protocol
Cache supplies data when
shared state
(no memory access)
Illinois Protocol

Place read miss
on bus

Place Write
Miss on
Bus

25

Implementation Complications

Write Races:
Cannot update cache until bus is obtained

• Otherwise, another processor may get bus first,
and then write the same cache block!

Two step process:
• Arbitrate for bus
• Place miss on bus and complete operation

If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.
Split transaction bus:

• Bus transaction is not atomic:
can have multiple outstanding transactions for a block

• Multiple misses can interleave,
allowing two caches to grab block in the Exclusive state

• Must track and prevent multiple misses for one block

Must support interventions and invalidations
26

Implementing Snooping Caches

Multiple processors must be on bus, access to both
addresses and data
Add a few new commands to perform coherency,
in addition to read and write
Processors continuously snoop on address bus

If address matches tag, either invalidate or update
Since every bus transaction checks cache tags,
could interfere with CPU cache access:

solution 1: duplicate set of tags for L1 caches just to
allow checks in parallel with CPU
solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

• block size, associativity of L2 affects L1

27

Implementing Snooping Caches

Bus serializes writes, getting bus ensures no one else
can perform memory operation
On a miss in a write back cache, may have the
desired copy and its dirty, so must reply
Add extra state bit to cache to determine shared or not
Add 4th state (MESI)

28

Larger Multiprocessors

Separate Memory per Processor
Local or Remote access via memory controller
Alternative: directory per cache that tracks state of
every block in every cache

Which caches have a copies of block, dirty vs. clean, ...
Information per memory block vs. per cache block?

PLUS: In memory ⇒ simpler protocol (centralized/one
location)
MINUS: In memory ⇒
directory is ƒ(memory size) vs. ƒ(cache size)

Prevent directory as bottleneck?
distribute directory entries with memory, each keeping
track of which processors have copies of their blocks

29

ccNUMA Multiprocessors

Processor

L1
L2

Directory

Memory

Interconnection Network

Processor

L1
L2

Directory

Memory

Processor

L1
L2

Directory

Memory

Cache Coherent Non-Uniform Memory Access (ccNUMA)

30

Directory Protocol

Similar to Snoopy Protocol: Three states
Shared: ≥ 1 processors have data, memory up-to-date
Uncached (no processor has it; not valid in any cache)
Exclusive: 1 processor (owner) has data; memory out-of-date

Directory must track
Cache state
Which processors have data when in the shared state

• Bit vector, 1 if a particular processor has a copy
• Id and bit vector combination

Keep it simple:
Writes to non-exclusive data ⇒ write miss
Processor blocks until access completes
Assume messages received and acted upon in order sent

31

Directory Protocol

No bus and do not want to broadcast:
interconnect no longer single arbitration point
all messages have explicit responses

Terms: typically 3 processors involved
Local node where a request originates
Home node where the memory location of an address
resides
Remote node has a copy of a cache block, whether
exclusive or shared

Example messages on next slide:
P = processor number, A = address

32

Directory Protocol Messages

ReadMiss(P, A): from local cache to home directory
Processor P reads data at A, makes P the read sharer and
requests for data back

WriteMiss(P, A): from local cache to home directory
Processor P writes data at A, makes P the exclusive owner,
requests for data back

Invalidate(P, A): from home directory to remote cache
Invalidate a shared copy of A at processor P

Fetch(P, A): from home directory to remote cache
Fetch data at address A from P’s cache

Fetch&Invalidate(P, A): from home directory to remote cache
Fetch data at address A from P’s cache and invalidate home
directory node’s cache

DataReply(P, A): from home directory to remote cache
Return data from home directory (read miss)

33

Implementing a Directory

Issues
Operations are not atomic, why?
May have deadlocks, why?

Solutions
Two networks: one for requests and one for replies
How can this be helpful?

Optimizations
For read miss or write miss in Exclusive, send data
directly to requestor from owner to memory and then
from memory to requestor
Exclusive node is always the owner, is this difficult?

34

Synchronization

Why Synchronize? Need to know when it is safe
for different processes to use shared data
Issues for Synchronization:

Uninterruptable instruction to fetch and update
memory (atomic operation);
User level synchronization operation using this
primitive;
For large scale MPs, synchronization can be a
bottleneck; techniques to reduce contention and
latency of synchronization

35

Atomic Memory Instructions

Atomically swap the contents of a register and a memory
location

0 ⇒ synchronization variable is free
1 ⇒ synchronization variable is locked and unavailable
Set register to 1 & swap
New value in register determines success in getting lock

• 0 if you succeeded in setting the lock (you were first)
• 1 if other processor had already claimed access

Test-and-set
Test a value and sets it if the value passes the test

Fetch-and-op: it returns the value of a memory location and
atomically performs an operation

0 => synchronization variable is free

36

Load Locked and Store Conditional

Difficult to implement an atomic instruction on a large multiprocessor
efficiently
Load linked (or load locked) + store conditional

Load linked returns the initial value
Store conditional returns 1 if it succeeds (no other store to same memory
location since preceeding load) and 0 otherwise

Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

Always Block

What are the issues with this approach?

Acquire(lock) {
while (!TAS(lock.value))

Block(lock);
}

Release(lock) {
lock.value = 0;
Unblock(lock);

}

38

Always Spin

Two spinning loops in Acquire()?
Issues with this approach?

Acquire(lock) {
while (!TAS(lock.value))

while (lock.value)
;

}

Release(lock) {
lock.value = 0;

}

CPU CPU

L1 $ L1 $

L2 $

Multicore

CPU

L1 $

L2 $

CPU

L1 $

L2 $

… …

Memory

SMP

TAS
TAS

39

Optimal Algorithms

What is the optimal solution to spin vs. block?
Know the future
Exactly when to spin and when to block

But, we don’t know the future
There is no online optimal algorithm

Offline optimal algorithm
After an execution, we can derive exactly when to block or spin
(“what if”)
Useful to compare against online algorithms

40

Competitive Algorithms

An algorithm is c-competitive if
for every input sequence σ

CA(σ) ≤ c × Copt(σ) + k

c is a constant
CA(σ) is the cost incurred by algorithm A in processing σ
Copt(σ) is the cost incurred by the optimal algorithm in processing
σ

What we want is to have c as small as possible
Deterministic
Randomized

Constant Competitive Algorithms

If N is the number of spins equal to the context-switch
time, what is the competitive factor of the algorithm?

Acquire(lock, N) {
int i;
while (!TAS(lock.value))

for (i = 0; i < N; i++)
if (!lock.value) break;

if (lock.value)
Block(lock);

}

42

Approximate Optimal Online Algorithms

Main idea
Use past to predict future

Approach
Simplest method is random walk

• Decrement N by a unit if the last Acquire() blocked
• Increment N by a unit if the last Acquire() didn’t block

Recompute N each time for each Acquire() based on
some lock-waiting distribution for each lock

Theoretical results
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))

The competitive factor is about 1.58.

43

Empirical Results

From A. Karlin, K. Li, M. Manasse, and
S. Owicki, “Empirical Studies of
Competitive Spinning for a Shared-
Memory Multiprocessor,”
Proceedings of the 13th ACM
Symposium on Operating Systems
Principle, 1991.

44

2-barrier

2-barrier 2-barrier

Combining Tree Barriers

45

Summary

Cache is the key to implement a multiprocessor
Cache coherence is the design center

Snooping and directory protocols similar;
bus makes snooping easier because of broadcast (snooping =>
uniform memory access)
Directory has extra data structure to keep track of state of all
cache blocks

Distributing directory
scalable shared address multiprocessor
Cache coherent, Non uniform memory access

Synchronization
Require hardware support: atomic instructions
Need to be careful when using synchronization primitives on
large multiprocessors

