Thread-level Parallelism for the
Masses

Kunle Olukotun
Computer Systems Lab
Stanford University
Feb 2007

&

The World has Changed

* Process Technology Stops Improving
+ Moore’s law but ...
+ Transistors don’t get faster and they leak more (65nm vs. 45nm)
+ Wires are much worse
* Single Thread Performance Plateau
+ Design and verification complexity is overwhelming
+ Power consumption increasing dramatically
¢ Instruction-level parallelism (ILP) has been mined out

The Right Hand Turn:

*Move away from frequency as
performance

* Multi— everywhere; MT, CMP

From Intel Developer Forum, September 2004

FORUM

The Era of Single-Chip
Multiprocessors

* Single-chip multiprocessors provide a scalable alternative

Relies on scalable forms of parallelism
= Request level parallelism
= Data level parallelism

Modular design with inherent fault-tolerance and match to VLSI
technology

e Single-chip multiprocessors systems are here
All processor vendors are following this approach
In embedded, server, and even desktop systems

 How do we architect CMPs to best exploit thread-level
parallelism?
Server applications: throughput
General purpose and scientific applications: latency

Outline

e Motivation: The era of chip multiprocessors
* Throughput and low power: Sun Niagara
« Latency: Stanford TCC

TLP for the Masses
(Google)

1.8—
1.73—

1.6

—— Performance
—8— performance/$

— —i— Ferformance/watt

1.5

Relative

1.4-

1.3

1.2

1.13

-—._'—

g

|
B C

Three hardware Platforms
Source: Luiz Barroso, ACM Queue, Sept 2005

Constant Performance/Watt

g_ —m— Hardware ooe—————" P F—

3_ o D0% CAGR POWep e,

?_ e 30% CAGR POWEE o
< 5_ 40% CAGR POWEBE e reoreeomeeee e
g’ 5_ o BO% CAGR POWED ool
o

2005 2006 2006 2007 2008 2010
e« TCO dominated by power costs Source: Luiz Barroso,
+ 4 year server life cycle @ $ 0.09 KWh ACM Queue, Sept

2005
* We must improve performance/watt

Commercial Server Workloads

Web99 JBB TPC-C TPC-H SAP
Java
Domain Web Y OLTP DSS ERP
server App. server
Instruction-
level low low low high low
parallelism
Working set large large large large large

Data sharing low med large med large

Server Throughput Computing
Design

 Commercial server applications
Lots of tasks - multiple threads
Low ILP and high memory stall

* Best performance(throughput) achieved with multiple
threads
Scalable form of parallelism
Tradeoff latency of single thread for throughput of multiple threads
Forgo single wide OOO CPU for multiple simple CPUs
Medium to large caches
Lots of memory bandwidth

Maximizing CMP Throughput with
Simple Cores

J. Davis, J. Laudon, K. Olukotun PACT '05 paper

Examined several UltraSPARC I, Ill, IV, and Niagara
designs, accounting for differing technologies

Constructed an area model based on this exploration

Assumed a fixed-area large die (400 mm?), and
accounted for pads, pins, and routing overhead

Looked at performance for a broad swath of scalar and
In-order superscalar processor core designs

Simpler Cores Offer Higher Performance

—&— I5B
& TPCC
i TPCOW

§S%¢8 g% 22HEF 2 D H¥E® ToE
- - - N N N o oo M o QA T Q N &N N N T 9 9 <
o~ M om -
Scalar CMTs Superscalar CMTs
e Optimize for Chip IPC PACT 20051 §
400 mm? area architectures (4-20 cores) [details Jfor

L2 caches (1.5MB — 2.5MB)
Multiple pipes and multithreading is important
Scalar pipes are 37%—46% better than superscalar pipes (12 vs. 7 cores)

* & o o

Processor-Cache Balance is

Important
45 Agoregate [PC
u—
3.5 %\ \\
4
3.0 > T \i Co||—e—c1IpC
O 2.9 —e—C1 AIPC
% 20 \0 Cl| —a—c21PC
15 2 —a—C2 AIPC
10 Core IPC C1
. 2 2o
0.5
0.0 ‘ ‘
1.0MB 1.5MB 2.0MB 2.5MB

Secondary Cache Size

 Performance on TPC-C
 C1:64KB L1 caches, C2: 32 KB L1 caches, both 2p4t cores

Simpler Cores Offer Lower Power

Relative Power

2.5

1.5

0.5

¢ 0001 m2 A4 " A
¢InOrder1 E2 A4 " A)
A
e8 u A
A
L4 - A A
=] A (6}
° u A“
= 5
® - m
® -] 16)
® =]
S .' A °
. FI (6}
o A (6}
g & o
¢ A @
o 16)
2 A (o)
= A
=] AA
.ﬂfl “
J i
0.5 1 15 2 2.5 3

Relative chip throughput

+ Simple cores improve perf/watt
+ Same performance at 20% of power
+ 8 simple cores same power as 2 complex cores

Source: Tilak Agerwala,
Micro May-June 2005

Niagara 1 Design Principles

Afara Websystems (2000)

Acquired by Sun Microsystems (2002)
Designed for throughput and low power on commercial
server applications

Niagara 1 (UltraSPARC T1) 2005

Many simple cores vs. few complex cores
Exploit Thread (request) Level Parallelism vs. ILP
Improves power efficiency (MIPS/watt)
Lower development cost, schedule risk with simple pipeline
Improve yield by selling non-perfect parts

Designed for good performance with cache misses
Lots of memory bandwidth per chip
Runs real apps even better than benchmarks
Hide cache, branch stalls with threads vs. ILP

Niagara CMP Overview

C1 C2 C3 C4 C5 C6 C7 C8

Sys IF

Buffer Switch
Core

I I/O bus

SPARC V9
Implementation

8 cores x 4 threads =
32 threads

90GB/sec crossbar
switch

High-bandwidth 4-
way shared 3MB
Level-2 cache on
chip

4 DDR2 channels
~300M transistors

378 sq. mm die

SPARC Pipeline

Instruction Type — Crypto
Cache Misses —p TShrIea? Coprocessor
Traps and Interrupts —p ©€1€C
Resource Conflicts —p, LOIC - ¢

]

L[’D cache
l-cache |) — gl R?:gister ALU and Crossbar
> 3 lles Multiply_y| D-TLB [*™ |nterf

PC and > | Instr HUPTY Ly npzlnizies
Logic I-TLB | Buffer Divide Store

‘ : Decode| | Shift Buffer |

. Logic

Unmarked lines are 64-bit buses and/or control signals

e Single issue pipeline
* 4 threads, switch every cycle

* Per thread registers, instruction buffers and store buffers
20% area overhead

Niagara Memory System

Instruction cache
16kB, 4-way set associative, 32B line size
Data cache
8kB, 4-way set associative, 16B line size
Write-through cache, write-around on miss
L2 cache
3 MB, 12-way set associative, 64B line size
Write-through
4-way banked by line
Coherency
Data cache lines have 2 state: valid or invalid
Data cache is write through = no modified state
Caches kept coherent by tracking lines in directories in L2
Consistency
TSO provided by crossbar

L2 is consistency point = threads that share L1 cache must wait to see
to stores

Memory System Performance

» Latencies
+ Load-to-use: 3 cycles
+ Unloaded L2 latency: 22 cycles
+ Unloaded memory latency: ~90 ns

* Bandwidth
¢ L2 bandwidth: 76.8 GB/s
¢+ Memory bandwidth: 25.6 GB/s

TPC-C Multithreading Performance

B_ o
LE2T—— Mizcellaneous -
. nri .
- . Pipeline Latency
g
] [] store Buffer Ful
—
%] . LZ Cache Miss
L=
E Data Cache Miss
ﬁ 3_: . Instruction Cache Miss
27 [Waiting for Pipeline
15 . Execution
ﬂ] |
1 Thread Per Core 4 Threads Per Core
Core CPI 5.39 1.8

+ 3xincrease in throughput for 20% area increase
+ 33% increase in latency

Niagara 1 Die Photo

90 nm
279M transistors
378 mm?

_,
D
P

1
T P A R L TR RS

wasarsd 148301

[T

90nm Microprocessor Comparison

Processor

Cores/chip x
threads/core

Peak IPC/core
Peak IPC/chip

L1 1/D (KB)

L2 (MB)

Memory BW (GB/s)
Frequency (GHz)

Power

Niagara

8x4

1
8
16/8

3 shared
25.6
1.2
79

Opteron

2x1

3
6
64/64

1 per core
12.8
2.4
110

Pentium D Power 5+

2X2

3
6
12/16

1 per core
8.5
3.2
130

2X2

4
8
64/32

1.9 shared
12.8
2.3
120

Throughput Performance

7

B Fowerd+ W Opteron @ Niagara

(]
L1 1 11

s

Cad

M

=k
L1

Performance relative to Pentium D

P

SPECintRate SFECFFRate SPECJBBOS SPECWeb05 TPC-C

Performance/Watt

Perdormance/Watt relative to Pentium D

==
d

_—
=

9

] Bl Fower5+ [Opteron [l Niagara

= M W b 0 D ~ o

7

SFECintRate SFECFFPRate SPECJBBOS SF’EEWEI::EIE

Niagara 1 Bottlenecks

% Utilization

4 threads/core

1 thread/core

Pipeline

90
TPC-C
% []
70 . SPECjbb
-
B O 60+ SAP
©
N 07
S 40—
-
- o\o 30_
20-
10—
® | 0 ® | |
D D (/] (/] [}
= = £ 3 £ = - =
8 8 8 § 3 8 3 8
c © QY] = o c [o
Re] © -~ ie] © -~
© (@] © Q
) e
B :7,
£ £

Bottlenecks in pipeline and DRAM interface
Spare bandwidth in caches

Memory

Transforming Niagara 1 into Niagara 2

Goal: double throughput with same power
Double number of cores?

Double number of threads from 4 to 8
Choose 2 threads out of 8 to execute each cycle

Double execution units from 1 to 2 and add FPU
Double set associativity of L1 instruction cache to 8-way

Double size of fully associative DTLB from 64 to 128
entries

Double L2 banks from 4 to 8

15 percent performance loss with only 4 banks and 64 thread

Niagara 2 at a Glance

BN FE DIMM FB DIMM
IELMI ‘

FB DIMM

——— » 8 cores x 4 threads
¢ 2 pipes/core
¢ 2 thread groups
1 FPU per core
Crypto coprocessor per core
+ DES, 3DES, AES, RC4, etc
4MB L2, 8-banks, 16-way S.A

4 x dual-channel FBDIMM ports
(60+ GB/s)

e > 2x Niagara 1 throughput and
throughput/watt

* 1.4 x Niagara 1 int
* >10x Niagara 1 FP

L2 L2$ L2$ L2$ L2$ L2% L2$ L2$
Full Cross Bar

NIU Sys IIF
(E-net+) Buffer Switch Core

Power 80W
2x 10GE Ethernet x8 @2.5GHz

Niagara 2 Die

l-".!"-"i
| e+ 65nm
5 342 mm?

» ﬁ_
f S
°

The Looming Crisis

By 2010, software developers will face...

CPU’s with: (Niagara 2 and follow ons)
20+ cores
100+ hardware threads

Heterogeneous cores and application specific accelerators
GPU’s with general computing capabilities

Parallel programming gap: Yawning divide between the
capabilities of today’s programmers, programming languages,
models, and tools and the challenges of future parallel architectures
and applications

Challenges in Parallel Programming

* Finding independent Memory model
tasks « Composing tasks
* Mapping tasks to threads . Scalability

* Defining & implementing . Parallel performance
synchronization protocol analysis

* Race conditions - Recovering from errors
* Deadlock avoidance

- Transactions address a lot of parallel
programming problems

Transactional Coherence & Consistency
(TCC)

With Christos Kozyrakis
Goal

Make shared memory parallel programming accessible to the
average developer

Shared-memory parallel programming with transactions
No threads, no locks, just transactions...

Programmer defined transactions are the only abstraction:
Parallel work
Communication and synchronization
Memory coherence and consistency
Failure atomicity and recovery
Performance optimization

Transactional memory definition

Memory transaction: A sequence of memory operations
that either execute completely (commit) or have no effect
(abort)

An “all or nothing” sequence of operations

On commit, all memory operations appear to take effect as a unit
(all at once)

On abort, none of the stores appear to take effect

Transactions run in isolation
Effects of stores are not visible until transaction commits
No concurrent conflicting accesses by other transactions

Similar to database ACID properties

Transactional memory language
construct

The basic atomic construct:
lock(L); x++; unlock(L); > atomic {x++;}

Declarative — user simply specifies, system implements
“‘under the hood”

Basic atomic construct universally proposed

= HPCS languages (Fortress, X10, Chapel) provide atomic in lieu of
locks

= Research extensions to languages — Java, C#, Haskell, ...

Lots of recent research activity

= Transactional memory language constructs
= Compiling & optimizing atomic
= Hardware & software implementations of transactional memory

The Atomos Transactional Programming
Language

 Atomos derived from Java

Transactional Memory for concurrency
= atomic blocks define basic nested transactions
= Removed synchonized and volatile
Transaction based conditional waiting
= Derivative of Conditional Critical Regions and Harris retry
* Removed wait, notify,and notifyAll
= Watch sets for efficient implementation
Open nested transactions
= open blocks committing nested child transaction before parent
= Useful for language implementation but also available for apps
Violation handlers
= Handle expected violations without rolling back in all cases
= Not part of the language, only used in language implementation

Transactional Memory Benefits

« Easier to achieve scalable results

+ Locks

= Coarse-grained locks simple to use
However limits scalability

= Fine-grained locks can improve scaling
However hard to get right
+ Transactions
= As easy to use as coarse-grained locks
= Scale as well as fine-grained locks

HashMap performance

—&— Synch (coarse) —— Synch (fine) - Atomic
==
__ 20
L

.dgi 1.5
=10

0.5 *
0.0

1 2 4 8 16

Threads

Transactions scales as well as fine-grained locks

SPECjbb2000 with Nested

Transactions

E 0.3-
=
= 0.25-
=
% 0.2 5. 4%
E 0.153] violations
N
E 0.1
E 0.05

04 ,

Flat transaction Mested transactions

+ 5.4x speedup with 8 processor CMP
+ Violation time reduced and improved cache behavior
¢ Details in [ISCA'06]

TCC Execution Model

CPUoO CPU1 CPU 2
[]
Execute
[]
Code
st Oxbeef 1d Oxbeef
Execute
—Code —\
Arbitrate s
Oxbeef

Violate

Re- | 14 0xbeef
Execute

Code

Transactional coherence/consistency with non-blocking guarantees
See [ISCA’04] for details

Scaling TCC

Eliminate commit broadcast of original TCC
Eliminate write through cache design
Supports parallel commits

First scalable TM implementation of a directory
based distributed shared memory that is live-
lock free

Scalable TCC Performance
64 proc DSM

- Write-through commit no longer works
¢+ 2-phase commit = parallel commit

+ Commit is not a bottleneck
* Excellent scalability

B Usaful CacnehMize] ide] Commit] Viclations

-3 5

S R a—

gost——— 32—

8 p1d 1 1o 1 - .

E 1] G 1€) H.EI- :
el L] -1 A
ﬁ o

BLHT WHORT DENT OO DO mm BBOIT ELOIT DT BENT @ONT @
bames clusier sguake LUAacT radi. oo SUEE ewim - tomoaty waternia voirend Waler-sp

Conclusions

e Sun Niagara
CMP optimized for performance/watt on commercial server applications
Design approach: trade latency for throughput = low power

Simple pipelines, CMP and multithreading, high bandwidth memory hierarchy

2-4x improvement in performance/watt compared to conventional
microprocessors on commercial applications

« Stanford TCC: a shared-memory parallel model with transactions

Software-defined transactions as the only abstraction for parallelism,
communication, failure atomicity, and optimization

Simple path to correct code:

= Through speculative parallelism and HW-based atomicity/ordering
Intuitive, feedback-driven performance tuning

= Through continuous data tracking and logging
Initial results are encouraging

= 90% of performance at 10% of programming effort

