
 Thread-level Parallelism for the

Masses

Kunle Olukotun

Computer Systems Lab

Stanford University

 Feb 2007

The World has Changed

• Process Technology Stops Improving
! Moore’s law but …

! Transistors don’t get faster and they leak more (65nm vs. 45nm)

! Wires are much worse

• Single Thread Performance Plateau
! Design and verification complexity is overwhelming

! Power consumption increasing dramatically

! Instruction-level parallelism (ILP) has been mined out

From Intel Developer Forum, September 2004

The Era of Single-Chip

Multiprocessors

• Single-chip multiprocessors provide a scalable alternative
! Relies on scalable forms of parallelism

" Request level parallelism

" Data level parallelism

! Modular design with inherent fault-tolerance and match to VLSI
technology

• Single-chip multiprocessors systems are here
! All processor vendors are following this approach

! In embedded, server, and even desktop systems

• How do we architect CMPs to best exploit thread-level
parallelism?
! Server applications: throughput

! General purpose and scientific applications: latency

Outline

• Motivation: The era of chip multiprocessors

• Throughput and low power: Sun Niagara

• Latency: Stanford TCC

TLP for the Masses

 (Google)

Source: Luiz Barroso, ACM Queue, Sept 2005

Constant Performance/Watt

• TCO dominated by power costs
! 4 year server life cycle @ $ 0.09 KWh

• We must improve performance/watt

Source: Luiz Barroso,
ACM Queue, Sept

2005

Commercial Server Workloads

med

large

high

low

Java

App. server

JBB

highhighhighhigh
Thread-level

Parallelism

low

large

low

Web
server

Web99

largemedlargeData sharing

largelargelargeWorking set

lowhighlow
Instruction-
level
parallelism

ERPDSSOLTPDomain

SAPTPC-HTPC-C

Server Throughput Computing

Design

• Commercial server applications
! Lots of tasks # multiple threads

! Low ILP and high memory stall

• Best performance(throughput) achieved with multiple
threads
! Scalable form of parallelism

! Tradeoff latency of single thread for throughput of multiple threads

! Forgo single wide OOO CPU for multiple simple CPUs

! Medium to large caches

! Lots of memory bandwidth

Maximizing CMP Throughput with

Simple Cores

• J. Davis, J. Laudon, K. Olukotun PACT '05 paper

• Examined several UltraSPARC II, III, IV, and Niagara
designs, accounting for differing technologies

• Constructed an area model based on this exploration

• Assumed a fixed-area large die (400 mm2), and
accounted for pads, pins, and routing overhead

• Looked at performance for a broad swath of scalar and
in-order superscalar processor core designs

Simpler Cores Offer Higher Performance

• Optimize for Chip IPC
! 400 mm2 area architectures (4–20 cores)

! L2 caches (1.5MB – 2.5MB)

! Multiple pipes and multithreading is important

! Scalar pipes are 37%–46% better than superscalar pipes (12 vs. 7 cores)

[PACT 2005] for
details

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0MB 1.5MB 2.0MB 2.5MB

Secondary Cache Size

IP
C

C1 IPC

C1 AIPC

C2 IPC

C2 AIPC

6 5

3

8

5

3

2

4

Core IPC

Aggregate IPC

C2

C1

C2

C1

Processor-Cache Balance is

Important

• Performance on TPC-C

• C1: 64KB L1 caches, C2: 32 KB L1 caches, both 2p4t cores

! Simple cores improve perf/watt

! Same performance at 20% of power

! 8 simple cores same power as 2 complex cores

Simpler Cores Offer Lower Power

Source: Tilak Agerwala,
Micro May-June 2005

Niagara 1 Design Principles

• Afara Websystems (2000)
! Acquired by Sun Microsystems (2002)

• Designed for throughput and low power on commercial
server applications
! Niagara 1 (UltraSPARC T1) 2005

• Many simple cores vs. few complex cores
! Exploit Thread (request) Level Parallelism vs. ILP

! Improves power efficiency (MIPS/watt)

! Lower development cost, schedule risk with simple pipeline

! Improve yield by selling non-perfect parts

• Designed for good performance with cache misses
! Lots of memory bandwidth per chip

! Runs real apps even better than benchmarks

! Hide cache, branch stalls with threads vs. ILP

Niagara CMP Overview

• SPARC V9
implementation

• 8 cores x 4 threads =
32 threads

• 90GB/sec crossbar
switch

• High-bandwidth 4-
way shared 3MB
Level-2 cache on
chip

• 4 DDR2 channels

• ~300M transistors

• 378 sq. mm die
I/O bus

SPARC Pipeline

• Single issue pipeline

• 4 threads, switch every cycle

• Per thread registers, instruction buffers and store buffers
! 20% area overhead

Niagara Memory System

• Instruction cache
! 16kB, 4-way set associative, 32B line size

• Data cache
! 8kB, 4-way set associative, 16B line size

! Write-through cache, write-around on miss

• L2 cache
! 3 MB, 12-way set associative, 64B line size

! Write-through

! 4-way banked by line

• Coherency
! Data cache lines have 2 state: valid or invalid

! Data cache is write through # no modified state

! Caches kept coherent by tracking lines in directories in L2

• Consistency
! TSO provided by crossbar

! L2 is consistency point # threads that share L1 cache must wait to see
to stores

Memory System Performance

• Latencies
! Load-to-use: 3 cycles

! Unloaded L2 latency: 22 cycles

! Unloaded memory latency: ~90 ns

• Bandwidth
! L2 bandwidth: 76.8 GB/s

! Memory bandwidth: 25.6 GB/s

TPC-C Multithreading Performance

! 3x increase in throughput for 20% area increase

! 33% increase in latency

Core CPI 5.39 1.8

Niagara 1 Die Photo

• 1 FPU

• 90 nm

• 279M transistors

• 378 mm2

90nm Microprocessor Comparison

130

3.2

8.5

1 per core

12/16

6

3

2 x 2

Pentium D

120

2.3

12.8

1.9 shared

64/32

8

4

2 x 2

Power 5+

79

1.2

25.6

3 shared

16/8

8

1

8 x 4

Niagara

12.8Memory BW (GB/s)

2.4Frequency (GHz)

110Power

1 per coreL2 (MB)

64/64L1 I/D (KB)

6Peak IPC/chip

3Peak IPC/core

2 x 1
Cores/chip x
threads/core

OpteronProcessor

Throughput Performance

Performance/Watt

Niagara 1 Bottlenecks

• Bottlenecks in pipeline and DRAM interface

• Spare bandwidth in caches

1 thread/core 4 threads/core

Transforming Niagara 1 into Niagara 2

• Goal: double throughput with same power
! Double number of cores?

• Double number of threads from 4 to 8
! Choose 2 threads out of 8 to execute each cycle

• Double execution units from 1 to 2 and add FPU

• Double set associativity of L1 instruction cache to 8-way

• Double size of fully associative DTLB from 64 to 128
entries

• Double L2 banks from 4 to 8
! 15 percent performance loss with only 4 banks and 64 thread

Niagara 2 at a Glance

• 8 cores x 4 threads

! 2 pipes/core

! 2 thread groups

• 1 FPU per core

• Crypto coprocessor per core

! DES, 3DES, AES, RC4, etc

• 4MB L2, 8-banks, 16-way S.A

• 4 x dual-channel FBDIMM ports
(60+ GB/s)

• > 2x Niagara 1 throughput and
throughput/watt

• 1.4 x Niagara 1 int

• > 10x Niagara 1 FP

Niagara 2 Die

• 65 nm

• 342 mm2

The Looming Crisis

• By 2010, software developers will face…

• CPU’s with: (Niagara 2 and follow ons)

! 20+ cores

! 100+ hardware threads

! Heterogeneous cores and application specific accelerators

• GPU’s with general computing capabilities

• Parallel programming gap: Yawning divide between the
capabilities of today’s programmers, programming languages,
models, and tools and the challenges of future parallel architectures
and applications

• # Transactions address a lot of parallel
programming problems

Challenges in Parallel Programming

• Finding independent
tasks

• Mapping tasks to threads

• Defining & implementing
synchronization protocol

• Race conditions

• Deadlock avoidance

• Memory model

• Composing tasks

• Scalability

• Parallel performance
analysis

• Recovering from errors

Transactional Coherence & Consistency

(TCC)

• With Christos Kozyrakis

• Goal
! Make shared memory parallel programming accessible to the

average developer

• Shared-memory parallel programming with transactions
! No threads, no locks, just transactions…

• Programmer defined transactions are the only abstraction:
! Parallel work

! Communication and synchronization

! Memory coherence and consistency

! Failure atomicity and recovery

! Performance optimization

Transactional memory definition

• Memory transaction: A sequence of memory operations
that either execute completely (commit) or have no effect
(abort)

• An “all or nothing” sequence of operations
! On commit, all memory operations appear to take effect as a unit

(all at once)

! On abort, none of the stores appear to take effect

• Transactions run in isolation
! Effects of stores are not visible until transaction commits

! No concurrent conflicting accesses by other transactions

• Similar to database ACID properties

Transactional memory language

construct

• The basic atomic construct:

 lock(L); x++; unlock(L); # atomic {x++;}

• Declarative – user simply specifies, system implements
“under the hood”

• Basic atomic construct universally proposed
" HPCS languages (Fortress, X10, Chapel) provide atomic in lieu of

locks

" Research extensions to languages – Java, C#, Haskell, …

• Lots of recent research activity
" Transactional memory language constructs

" Compiling & optimizing atomic

" Hardware & software implementations of transactional memory

The Atomos Transactional Programming

Language

• Atomos derived from Java
! Transactional Memory for concurrency

" atomic blocks define basic nested transactions

" Removed synchonized and volatile

! Transaction based conditional waiting
" Derivative of Conditional Critical Regions and Harris retry

" Removed wait, notify, and notifyAll

" Watch sets for efficient implementation

! Open nested transactions
" open blocks committing nested child transaction before parent

" Useful for language implementation but also available for apps

! Violation handlers
" Handle expected violations without rolling back in all cases

" Not part of the language, only used in language implementation

Transactional Memory Benefits

• Easier to achieve scalable results

! Locks
" Coarse-grained locks simple to use

However limits scalability

" Fine-grained locks can improve scaling
However hard to get right

! Transactions
" As easy to use as coarse-grained locks

" Scale as well as fine-grained locks

HashMap performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16

Threads

T
im

e
 (

s
)

 Synch (coarse) Synch (fine) Atomic

Transactions scales as well as fine-grained locks

SPECjbb2000 with Nested

Transactions

! 5.4x speedup with 8 processor CMP

! Violation time reduced and improved cache behavior

! Details in [ISCA’06]

TCC Execution Model

CPU 0 CPU 1 CPU 2

Commit

Arbitrate

Execute

Code

Commit

Arbitrate

Execute

Code

Violate

Execute

Code

ld 0xbeef
Re-

Execute

Code

...

ld 0xaaaa

ld 0xbbbb

...

ld 0xbeef

...

...

0xbeef

0xbeef

st 0xbeef

...

ld 0xdddd

ld 0xeeee

...

Transactional coherence/consistency with non-blocking guarantees

 See [ISCA’04] for details

Scaling TCC

• Eliminate commit broadcast of original TCC

• Eliminate write through cache design

• Supports parallel commits

• First scalable TM implementation of a directory
based distributed shared memory that is live-
lock free

Scalable TCC Performance

64 proc DSM

• Write-through commit no longer works
! 2-phase commit fi parallel commit

! Commit is not a bottleneck

• Excellent scalability

Conclusions

• Sun Niagara
! CMP optimized for performance/watt on commercial server applications

! Design approach: trade latency for throughput # low power

! Simple pipelines, CMP and multithreading, high bandwidth memory hierarchy

! 2-4x improvement in performance/watt compared to conventional
microprocessors on commercial applications

• Stanford TCC: a shared-memory parallel model with transactions
! Software-defined transactions as the only abstraction for parallelism,

communication, failure atomicity, and optimization

! Simple path to correct code:
" Through speculative parallelism and HW-based atomicity/ordering

! Intuitive, feedback-driven performance tuning
" Through continuous data tracking and logging

! Initial results are encouraging
" 90% of performance at 10% of programming effort

