
Princeton University Spring ’07

COS 594 : Limits on Approximation

Lecture 12: Directed EDP with Congestion

Lecturer: Moses Charikar Scribe: Rajsekar Manokaran

1 Overview of the lecture

In this lecture, we will study the directed edge-disjoint paths (EDP) problem with congestion. This
problem, similar to the undirected EDP problem we studied earlier, asks for the maximum number
of source-sink pairs that can be routed through a directed graph such that no edge is used by more

c pairs. We will first show that the integrality gap of a natural LP relaxation is Ω
(

n
1

3c+11

)

for

constant c. Then, we will extend the result to prove that the problem is hard to approximate within

a factor of Ω
(

n
1

3c+19

)

. A stronger version of this result was proven independently by Chuzhoy and

Khanna[1] and Guruswami and Talwar[2]. The presentation here is from the paper by Chuzhoy
and Khanna.

2 Linear Programming Relaxation

Before giving an LP relaxation, we state the problem formally.

Definition 1 (EDPwC) Given a graph G(V,E), a collection of source-sink pairs (s1, t1), . . . , (sk, tk)
and an integer c, route as many pairs as possible such that less than c paths go through each edge.

The quantity c is called the congestion. The performance of algorithms for EDPwC is compared

against the optimal solution with congestion 1.

We have the following natural LP relaxation using multi-commodity flows:

max
∑

i

xi (1)

such that

xi −
∑

P∈Pi

f(P) = 0 1 ≤ i ≤ k (2)

∑

P :e∈P

f(P) ≤ 1 e ∈ E (3)

xi, f(P) ∈ [0, 1] 1 ≤ i ≤ k, P ∈ P (4)

Note that c does not appear in the above LP as we allow the fractional solution to have
congestion at most 1. We will show the integrality gap by constructing a graph where the integral
solution can route a small fraction of the vertices whereas the LP solution can route a 1/c fraction
of every pair.

1

2

3 Integrality Gap

3.1 Gap Instance

We will now prove an integrality gap of Ω
(

n
1

3c+11

)

for the above LP relaxation. The gap instance

we will construct will be a layered graph with the sources occupying the first layer and the last
layer consisting of the sinks. Each intermediate layer is made up of a collection of blobs. Each blob
has some “input” vertices to receive edges from the previous layer and “output” vertices which
connect to the next layer. Edges in the graph are either within a blob or between layers.

More formally, we will have a source-sink pair for every pair (i, y) for i ∈ [m] and y ∈ Y for
some set of labels Y and integer m which are yet to be chosen. Sources (and similarily sinks) of the
form (i, y) will be called type-i sources (or sinks). As described above, the sources and the sinks
occupy the first and the last layers. We will have Z intermediate layers each of which contains a
blob for every label. Thus, we have Z |Y | blobs in total (and |Y | blobs per layer). Further, each
blob has m input vertices and m output vertices.

3.2 Labeling Scheme

The set of labels Y will be
[

2m2Z
]

⊗
[

2m2Z
]

and hence a 2-dimensional vector space over
[

2m2Z
]

.
The component-wise addition modulo 2m2Z gives a natural way to “add” two labels to obtain a
new label. The collection of labels ui, where ui = (i, i2) for 1 ≤ i ≤ m will be called the increment
vectors.

Let us denote the sources (i, y) (resp sinks) by S(i, y) (resp (T (i, y)). Similarily, denote the blob
in layer j and with label y by B(j, y). The source S(i, y) will be connected to the ith input vertex
of B(1, y + ui) by an edge; the ith output of B(1, y + ui) will be connected to B(2, y + 2ui) the
corresponding output being connected to B(3, y + 3ui) and so on till finally we connect the blob in
the last layer to T (i, y). More generally, if we (abuse notation and) denote the ith vertex of B(j, y)
by B(j, y, i), then we have:

1. edges B(j, y, i) → B(j + 1, y + ui, i) for all 1 ≤ j ≤ Z, y ∈ Y and 1 ≤ i ≤ m

2. edges S(i, y) → B(1, y + ui, i) for all 1 ≤ i ≤ m and y ∈ Y

3. edges B(Z, y + Zui, i) → T (i, y)

3.3 Constructing the blobs

All that is left to complete the construction is to describe the edges within a blob. Note that each
blob has m input vertices and m output vertices. We randomly group the m input vertices into
m/c groups of size c each. For each group, introduce a new “special” edge and connect all the
input vertices of the group to one side of the edge and the corresponding output vertices to the
other side.

3

4 Proof of the Gap

4.1 Canonical Paths

From the construction, we immediately have the path S(i, y) → B(1, y+ui) . . . → B(j, y+jui) . . . →
T (i, y) called the canonical path P (i, y). The following lemma proves that P (i, y) is the only path
that connects S(i, y) to T (i, y)

Lemma 1
For k ≤ Z + 1, let ui1 , ui2 . . . uik and uj be increment vectors such that kuj = ui1 + ui2 . . . + uik .

Then, uj = ui1 = . . . = uik .

Proof: Since any component of an increment vector is at most m2, the sum of Z + 1 of them will
strictly be less than 2m2Z. Thus, it is enough to prove the lemma for standard vector addition

over the integers. Writing uj =
ui1

+ui2
...+ui

k

k , we see that uj is a convex combination of the points
ui1 , ui2 . . . uik . Since the curve (x, x2) is strictly convex, the statement of the lemma immediately
follows. 2

Corollary 2
The canonical path P (i, y) is the only path from S(i, y) to T (i, y)

Remark 1 The construction and hence the hardness we will describe also applies to the All-or-
Nothing flow problem. Here, the constraint that the pairs should be routed through a single path is
relaxed to just requiring that a total flow of one unit between each pair. Due to the above corollary,
this problem is no easier on the instance we consider.

4.2 Bounding Integral Solutions

The size of our construction is O(mZ |Y |) = O(m5Z3). Further, the LP can route a 1/c frac-
tion of flow through each canonical path hence attaining m |Y | /c units of flow (fractionally) with
congestion 1.

Suppose the integral solution routes more than 8c |Y | with congestion strictly less than c. This
means that this many pairs are routed through each layer of blobs. By averaging, we want to
lower bound the number of blobs (in each layer) that route many (say 4c) pairs. Indeed, if x is the
number of blobs that route 4c pairs, then xm + |Y | (4c) ≥ 8c |Y |. Hence, at least 4c |Y | /m blobs
in each layer route 4c pairs each. We call these blobs the “good” blobs.

Next, we want to upper bound the probability that a fixed good blob is not c-congested. Seeing
the edges in the blobs as choosing a random c subset out of the m input vertices, the probability
that the first edge choses all of them from the set (of size at least 4c) of pairs routed through the
blob is:

(4c
c

)

(m
c

) =
(4c)(4c − 1) · · · (3c + 1)

m(m − 1) · · · (m − c + 1)
≥
(

3c

m

)c

Since we have Z layers and at least 4c |Y | /m good blobs in each layer, the probability that
none of them is congested is

4

[

1 −
(

3c

m

)c]4c|Y |Z/m

≤ e−3c4|Y |Z(3c/m)c+1

= e
−O

“

|Y |Z

mc+1

”

The number of such solutions is at most 2m|Y | < em|Y |. Hence, setting Z = O(mc+2), we get (the

existence of) a construction of size m3c+11 which achieves an integrality gap of m|Y |
c /8c |Y | = O(m).

This proves an integrality gap of Ω(n1/(3c+11)).

5 Hardness of approximating directed EDPwC

Now, we will extend the above result to obtain a hardness result for the approximation of the
problem. We will perfrom a reduction from the independent set problem. Our starting point is the
following result of Hastad[3].

Theorem 3
For any ε > 0, it is hard to distinguish between graphs with an independent set of size n1−ε and

graphs with no independent set of size nε unless NP ⊆ ZPP.

5.1 Reduction from Independent Set Instance

Given an instance, G, of the independent set problem, we want to construct an instance of the
directed EDP problem such that if G has a large independent set (and hence is an YES instance
for the gap problem), then we can route at least an Ω(1/mε)-fraction with congestion 1. On the
other hand, if G is a NO instance, no more than O(1/

√
m)-fraction of pairs can be routed.

The construction will be similar to the integrality gap construction. We will set m to be the
number of vertices in G (the independent set instance) and we will chose Z later. The blobs will be
constructed in a slightly different manner (from the graph G). If we see the type-i source-sinks as
representing vertex i in G, then since each input to a blob is of a different type, the input vertices of
any blob correspond to the vertex set of G. As before, we will group the m input vertices randomly
into m/c groups of size c each. For each group of c vertices, if the corresponding vertices in G
form a clique, we proceed in the usual way and connect all of them to a special edge inside the
blob. On the other hand, if the group does not form a clique in the independent set instance, we
connect them using c special edges (thus allowing them to be routed through the blob without any
congestion).

5.2 Proof of Gap between YES and NO Instances

In the YES instance, we have an independent set S in the graph of size m1−ε. Then, we route
the source-sink pair (v, y) for all v ∈ S and y ∈ Y concurrently through their respective canonical
paths thus routing m1−ε|Y | pairs.

We will show that in the NO instance, any subset of 4 |Y | √m source-sink paths cause congestion
c with high probability. To get an handle on the probability of congestion in a blob, we need to
lower bound the number of c-cliques in a graph with small maximum independent set. For c ≥ 2
and an integer s, T (α, c) denote the minimum number of c-cliques in a graph with α vertices and
no independent set of size s. We will prove the following simple but arcane lemma.

5

Lemma 4
For α > (4s)c, T (α, c) ≥ αc

(2c)c(4s)c3
.

Proof: Base case: c = 2: For α > (4s)2, let the average degree be d. Then, by averaging
argument, we have a set of size at least α/2 with degree at most 2d. Restricting our attention to
those vertices, since each such vertex can connect to at most 2d more vertices in the group, we
have an independent set of size at least α/2(2d + 1). Thus, we have d > α/4s − 1/2. The number
of cliques of size 2 is αd/2 > α2/10s

For the induction step, observe that at least α/2 vertices must have degree at least α/2s − 1
as otherwise we would have an independent set of size α/2/(α/2s) = s. Thus at least half the
vertices have degree at least α/2s − 1 ≥ α/4s. The neighbourhood of each such vertex consists of
at least α/4s > (4s)c−1 vertices and hence contains at least T (α/4s, c − 1) cliques of size c − 1.
Thus, summing over all such α/2 vertices, and taking into account the fact that each c-clique may
be counted at most c times, we get T (α, c) ≥ α

2cT (α/4s, c − 1). Iterating, we get

T (α, c) ≥ α

2c

α/4s

2(c − 1)
. . .

α/ (4s)c−3

6
T (α/ (4s)c−2 , 2)

≥ αc−2

(2c)c−2 (4s)c2/2
T (α/ (4s)c−2 , 2)

≥ αc

(2c)c (4s)c3

2

For the NO instance, we will use the above lemma with α =
√

m and s = mε. For some
ε < 1/(3c3), thus giving us the following corollary.

Corollary 5
Any graph H on α =

√
m vertices that does not contain an independent set of size s = mε < m1/(3c3)

has at least Ω
(

mc/2−1/3
)

distinct cliques of size c.

Now we prove that in the NO case, less than 4 |Y | √m pairs can be routed. The proof is by
contradiction and is similar in essence to the proof of the integrality gap. Assume that there is a
solution that routes at least 4 |Y | √m pairs. As in the proof of the integrality gap, we lower bound
the “good” blobs that route many (here, 2

√
m) pairs through them.

Claim 6
For each layer, the fraction of blobs which are good is at least 2/

√
m.

Proof: Let x denote the fraction of good blobs. Then, we have m.x|Y | + 2
√

m.|Y | ≥ 4 |Y | √m
thus giving the required result. 2

Next, we lower bound the probability that no edge in any good blob has congestion c.

Claim 7
The probability that no edge in any good blob has congestion c is at most exp

(

−Ω
(

1

m
c
2
− 1

6

))

6

Proof: Let S be the set of vertices corresponding to the pairs routed through a good blob. Then
|S| ≥ 2

√
m. As before we see the random grouping as being done after the flows were routed. Let

Si denote the vertices in group i (for 1 ≤ i ≤ m/c). For i ≤ √
m/c, S − ∪j<iSj has atleast

√
m

vertices. Thus, the number of cliques that would cause a congestion of c is Ω
(

mc/2−1/3
)

. Thus,
the probability that none of these

√
m/c groups cause congestion c is:

Pr[no congestion in a good blob] ≤
[

1 − Ω

(

mc/2−1/3

mc

)]

√
m/c

≤ e
−Ω

„

1

m

c
2
− 1

6

«

2

Since we have a 2/
√

m fraction of good blobs in each layer and Z layers, the total probability

is bounded by exp
(

−Ω
(

(|Y |Z)/m
c

2
+ 1

3

))

. Since the number of possible solutions is at most 2|Y |m

setting Z = O(mc/2+1/3+1), we have an instance of size O(m9+3c/2) with a gap of m1/2−ε. Thus we
have the following theorem.

Theorem 8
For any fixed positive constant c ≥ 1, directed EDP with congestion c is hard to approximate

within a factor of Ω(n
1

3c+18) unless NP ⊆ ZPP.

Remark 2 The above construction works for non-constant c upto logλ N for some fixed λ although

we will lose a little in the hardness. We can get a hardness of Ω
(

n
1

3c+20

)

for such c.

Remark 3 The papers that prove the above results also prove, using a different technique, a
hardness of nΩ(1/c) for c upto α log n/ log log n for some absolute constant α.

References

[1] Julia Chuzhoy and Sanjeev Khanna. Hardness of directed routing with congestion. http:

//www.math.ias.edu/~cjulia/dir-multicut2.ps.

[2] Venkatesan Guruswami and Kunal Talwar. Hardness of low congestion routing in directed
graphs. http://eccc.hpi-web.de/eccc-reports/2006/TR06-141/index.html.

[3] J. Hastad. Clique is hard to approximate within n1−ε. In FOCS ’96: Proceedings of the 37th

Annual Symposium on Foundations of Computer Science, page 627, Washington, DC, USA,
1996. IEEE Computer Society.

