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Today’s guest lecture was presented by Professor Ken Norman of the Psychology De-
partment. Professor Norman is a neuroscientist and applies pattern classifiers, such as the
one’s learned about in this class, to functional magnetic resonance imaging (fMRI) data to
try and decode the brain. His lab is known as the Princeton Computational Memory Lab
and their website is located at: http://compmem.princeton.edu/.

1 Introduction

Figure 1: fMRI machine in the basement of Green Hall

The standard approach for brain studies is to place subjects in an MRI machine (see
Figure 1), have them perform a cognitive task, and then examine the regions of the brain
that are “lit up” on the MRI results. For example, you might perform a study in which
subjects memorize names of celebrities and locations and then perform scans while asking
them to retrieve those memorize. Examining which regions of the brain become active
while retrieving memories can provide clues to identify the neural signatures of particular
thoughts and memories. One interesting area of study is to track those signatures over time.

Neuroscientists work to answer the question: How does the brain process information?
We can further ask how information is represented and what information is represented.
Another big question is how information is transformed at different stages of neural pro-
cessing.

The practical side of Professor Norman’s talk today was to expose us to the problems of
neuroscience. Today’s techniques for analyzing fMRI data are not as good as the state-of-
the-art techniques in machine learning. Professor Norman and others want to bring brain
imaging “up to speed.”

http://compmem.princeton.edu/


2 fMRI Basics

Figure 2: Visualization of fMRI data separated into voxels.

Regions in the brain that are more active use more oxygen than those regions that are
not. The small difference between oxygenated and deoxygenated regions is detected by
fMRI. The images are then analyzed by imagining the brain in a sliced 3-D cube. Each
slice of the 3-D cube is known as a volumetric pixel or “voxel” (see Figure 2). Each voxel
is 3mm on each side.

The accuracy of fMRI data suffers for several reasons. It requires two seconds to take a
picture of the whole brain (one fMRI scan). Secondly, the size of each voxel is BIG relative to
neurons, which are on the scale of micrometers. Furthermore, we are not directly measuring
the electrical activity in the brain - only a level that is correlated with electrical activity.

One final note about fMRI is that the blood flow response is smeared out in time. Indeed,
the peak occurs about six seconds after the neuron fires. Researchers have to adjust the
timeline of their images to account for this fact.

3 Applications of Machine Learning

3.1 An Example Brain Study

A key insight is that cognitive states (such as recalling a specific memory) correspond to
distributed patterns of brain activity. If we can identify those patterns in the fMRI data,
then we can associate them with different cognitive states. This is the idea behind the study
“Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal
Cortex” (Haxby et. al, 2001).

In the study, subjects were shown images of faces, cats, five man-made objects, and
nonsense pictures. The researchers recorded the subjects’ brains’ responses to the images
and then applied a machine learning algorithm to them to predict the type of image from
the brain scan. The algorithm calculated the average response to one-half of the data for
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each category, and then performed nearest-neighbor approximation on the second half of
the data using the correlation across voxels as the distance metric. The algorithm was able
to predict the type of image with an overall accuracy of 96%. The subjects were in the
scanner for a total of thirty minutes each.

Prof. Norman’s group extended the Haxby study by tracking two different cognitive
states (looking at pictures of shoes or pictures of bottles) using single images. They con-
verted the data into vectors that reflected pattern of activity across voxels at a point in
time. They then trained a neural network classifier (logistic regression) in a supervised
setting on the vector data and tested on new data. Professor Norman noted that fancier
machine learning algorithms generally don’t do better than basic ones on this data.

3.2 Free Recall and Mental Time Travel

The study “Category-Specific Cortical Activity Precedes Retrieval During Memory Search”
(Polyn et al, 2005) examined how we retrieve memories selectively. If we think intuitively
about the process of retrieving memories, one might start by remembering where we were,
or who was around. These general thoughts trigger memories and prod recall. We get
ourselves into the frame of mind that we were in at that time. Effectively, we are trying to
“rollback” our brain state. This is described as “mental time travel.” This study’s goal was
to image this rollback process.

The subjects were presented with three types of stimuli: pictures of famous faces, places,
and objects and were asked to rate them. Next, they were instructed to recall what images
they saw, in any order. A pattern classification algorithm was then trained on the fMRI
data from the showing phase, and then used to predict the probability that the subject
is remembering each type of picture during the recall phase. The success of the classifier
would indicate how similar one’s brain state is during the recall phase to how it was during
the showing phase.

Figure 3: Classifier predictions for Subject 9 - faces are blue, places are red, and
objects are green. The dots indicate when pictures of each type were recalled.
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An example result from this study is shown in Figure 3. It is clear that the classifier
has successfully assigned a high probability of remember a given type, just as the subject
is indeed doing so. Furthermore, the pattern of probability for each type rises before the
actual event of recalling pictures of that type.

¿From studies such as this one, neuroscientists have learned that some areas of the
brain respond most strongly to certain types of pictures. For example, there is a “face
area” that responds strongly to faces. The location of this face area tends to be consistent
across people. However, it remains important to study all areas, looking at the distributed
pattern of responses, since there is information contained throughout the fMRI scan.

3.3 Identifying Patterns in the Images

In the study “Decoding the visual and subjective contents of the human brain” (Kami-
tani and Tong, 2005), subjects were shown striped patterns of various orientations. The
researchers used a machine learning algorithm to try and predict the orientation of the pat-
tern being shown from the brain data. Their resulting predictions were accurate to within
twenty degrees.

Figure 4: Example of the association of neurons to orientations inside voxels.

Different neurons in the brain are attuned to different orientations (Figure 4a). Scientists
learned this by studying the physical properties of animal brains. Inside each of voxel are
many neurons attuned to different orientations. However, the precise distribution over the
orientations varies between voxels (Figure 4b). Using these small asymmetries to recover
strong information is exactly the strength of linear classifiers.

3.4 The Pittsburgh Competition

Professor Norman and his lab group compete in the Pittsburgh Brain Activity Interpretation
Competition (www.braincompetition.org). In the 2006 edition of the event, subjects were
scanned while watching three episodes of Home Improvement and simultaneously making
time-varying ratings of features such as amusement, food, tools, faces, etc. Competitors
received the brain scans for all three episodes and the ratings from the first two. Using this
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data, they were asked to predict the ratings for the third episode. The Princeton team of
Denis Chigirev, Greg Stephens and collaborators won second place.

This year’s competition involves brain scans from subjects who wandered around in a
virtual reality videogame while looking for things such as fruit and weapons. Competitors
will have to predict what was going on in the game from the fMRI data. Professor Norman
is looking for students to join this effort.

4 Technical Challenges

Interpreting brain scans is a particularly difficult problem for machine learning algorithms
(Mitchell et al., 2004, Machine Learning). The data is high dimensional (20,000 x 20,000
matrices [check]) and very noisy. We are looking for big patterns, of which there are
relatively few. Furthermore, most of the variance in the data is from non-interesting brain
data (such as breathing) and experimental procedure. Of course, the challenges that make
this problem hard also make it interesting.

How can we improve the situation? For starters, Professor Norman’s lab group has
tried every classifier they can implement in MATLAB. The choice of classifier doesn’t seem to
matter (much) however, which is consistent with the data being noisy and ill-posed. They
did find that regularization helps a lot. For example, ridge regression outperforms standard
linear regression.

4.1 Feature Selection

Feature selection has proven to be a useful means of improving the accuracy of the predic-
tions. The data is preprocessed to remove noisy voxels. The standard approach to doing
this is to run analysis of variance (ANOVA) on each voxel to see if it is able to make dis-
criminations above a certain threshold. Voxels that by themselves make poor predictions
generally make little positive contribution to the overall prediction. Of course, throwing
away even weak voxels is theoretically disadventageous since the benefit of linear classifiers
is that they can produce a strong output signal from many weak inputs.

To reach beyond this problem, we need to evaluate voxels on a multivariate basis. Ulti-
mately what we are looking for is the smallest set of voxels that carries the most information.
However, naively searching for this set is combinatorially explosive.

A promising heuristic, called “searchlights,” for approximately finding this set is outlined
in the paper “Information-based functional brain mapping” (Kriegeskorte et al., 2006). The
paper proposes sliding a sphere of voxels around inside the brain image, and computing in a
multivariate manner how well the voxels in the searchlight will perform. Good searchlights
are kept track of, so they can be added to the final set.

4.2 Dimensionality Reduction

Another promising technique for reducing the complexity of the problem is dimensionality
reduction. Recoding the data is successful because there is extensive redundancy across
voxels (especially spatially proximate voxels). This is due to biological reasons such as the
evolution of the brain and the anatomy of the circulatory system. Clearly, the voxels are not
independent. Thus, searching for a more efficient way to represent the data seems fruitful.

An example technique used for dimensionality reduction of fMRI data is manifold learn-
ing. Manifold learning tries to find a lower dimensional space in which useful information
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lies embedded in the high dimensional space of all the information. Other techniques include
spatial wavelet decomposition, ICA, and generative models for brain states. This work, by
David Weiss and David Blei models brain states as being a linear combination of “neural
topics,” which are specific patterns of voxel activity across the brain.

5 Future Directions

An obvious direction for future research is to try and increase the amount of information we
are feeding the classifiers. Currently, we know a lot more about the brain, fMRI response,
and cognition than we give the classifier to work with. Similarly, in current models, each time
slice is treated as distinct. In actuality, we know there is strong temporal autocorrelation
due to the sluggishness of the blood flow and because our brains usually shift slowly between
topics.

There is also spatial correlation to contend with in the data. Researchers have tried
to use spatial smoothing, but the constraint is that we don’t want to smooth over useful
information, which is already coarse-grained as compared to the scale of neurons. We can
try to measure the correlation between voxels and give that information the classifier.

Current analyses are focused on a single subject at a time. Can we leverage data from
other subjects to improve our classifier? For example, in the Haxby study (Section 3.1), can
we use other subjects’ activity when viewing shoes to intelligently set priors for the next
subject? Can we use data from other fMRI studies? We already know that there are areas
of the brain that tend to respond to faces or places. But how can we organize all of this
data, controlling for variations in experimental protocol?

Additional information that the classifiers are not considering is the hierarchical nature
often inherent in cognitive states. For example, if we are looking at pictures of animals
– such as bears – and classifying them according to dangerousness, our brain scans will
probably look different than if we are classifying them according to whether they are land
or sea animals. This is connected to how people control their thoughts. Our prefrontal
cortex biases which brain regions are active based on which tasks are performed. If we can
detect that bias in the fMRI data, then we can look for correct kind of “bear” pattern.

Graphical models have the flexibility to teach classifiers about these different constraints
(temporal autocorrelation, spatial correlation, data from other subjects, data from other
experiments, and hierarchical structure).

6 Information from the Q&A Session

When a researcher is showing a subject pictures of houses, we never actually know that they
are thinking about “houses,” but we trust that there is a higher probability of that, so our
results are meaningful on average. The concept of “task switching” when the brain changes
which task it is performing, such as from concentrating on the experiment to dreaming
about a vacation. In psychology studies, we can see “cognitive lapses” in the brain data
where the subject wasn’t doing what the researcher asked. Behavioral cognitive studies are
forced to assume that the subject is actually in the desired cognitive state, whereas in fMRI
studies, researchers have the advantage of actually “looking” at the brain.

As always, it is perilous to over-interpret the results of the classifier. They can predict
that there is information in a given region of the brain, but not necessarily what it means.
For example, we could theoretically apply classifiers to the early visual cortex, learn the
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coding of images there, and then predict the type image (for example, “a person”) based on
the pixel-like response of the nerves in that region. This does not, however, mean that there
are neurons in the early visual cortex that detect people. Classifiers can provide hypotheses
for further studies that might examine subjects who have brain damage (or temporary
malfunction) in the region of interest.

Classifiers are not useful for assessing information voxel by voxel. They make reliable
predictions from an ensemble of voxels.
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