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1 Multivariate Gaussian distributions

The multivariate Gaussian can be defined in terms of its mean, µ, a p x 1 vector, and its
covariance, Σ, p x p positive definite, symmetrical, invertible matrix.

The covariance for a pair of components i and j:

σij = E[xixj ] − E[xi]E[xj ] (1)

The variance for a single ith component:

σii = E[x2
i ] − E[xi]

2 (2)

The density for a given x is given by:

p(x|µ,Σ) =
1

(2π)n/2|Σ|1/2

(

−

1

2
(x−µ)T Σ−1(x−µ)

)

(3)

The covariance matrix Σ describes the shape of the multivariate Gaussian distribution. We
can visualize it by drawing contours of constant probability in p dimensions:

F (x) = 1/2(x − µ)T Σ−1(x − µ) (4)

The simplest covariance matrix to think about is an identity matrix. This yields a circular
Gaussian distribution in 2 dimensions, or a hypersphere in higher dimensions, where each
component has a variance of 1, e.g.

1 0 0
0 1 0
0 0 1

If you scale the individual components, this will cause the distribution to be ellipsoid, but
still oriented along the axes, e.g.

1.5 0 0
0 1 0
0 0 5

If some of the off-diagonal values are non-zero, this covariance between components skews
the orientation of the Gaussian so that it is no longer necessarily oriented along the axes.



In other words, the off-diagonal covariance values tell you that some of the components are
non-independent, i.e. they vary with respect to one another, e.g.

1.5 0 0.3
0 1 0
0 0 5

The mean µ defines the offset of the whole distribution, shifting the whole thing in space.

If we want to find the maximum likelihood estimate of the parameters of a multivariate
Gaussian distribution, given some X1...Xn p-dimensional data points:

µ̂ =
1

N

N
∑

i=1

xi (5)

Σ̂ =
1

N

N
∑

i=1

(xi − µ̂)(xi − µ̂)T (6)

These reduce down to the standard MLE estimates for a Gaussian in one dimension.

Now let’s take a multivariate Gaussian and divide it into two pieces, X1 and X2, that are
themselves multivariate Gaussians.

[ ~X ] = [ ~X1
~X2]

p(~x1, ~x2) is a Gaussian too.

We can now decompose µ into two parts:

~µ =< ~µ1, ~µ2 > (7)

and likewise decompose the covariance matrix into 4 parts:

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

By the chain rule, we know that:

p(x1, x2) = p(x2)p(x1|x2) (8)

The marginal of x2 is Gaussian:

µm = µ2 (9)

Σm = Σ22 (10)

The conditional x1|x2 is Gaussian:
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µc = µ1 + Σ12Σ
−1
22 (x2 − µ2) (11)

Σc = Σ11 − Σ12Σ
−1Σ21 (12)

Knowing x2 tells us something about the distribution of x1.

Sidenote: the Gaussian distribution is conjugate to itself - that is, when you have a Gaus-
sian, and you condition on a Gaussian, then you get another Gaussian.

2 Factor analysis

Factor analysis is another dimensionality reduction algorithm, that uses latent variables.
It’s a lot like PCA, except that it’s probabilistic. It was used a lot in the 1950s, but fell
out of favour because it doesn’t find a global minimum solution, is not identifiable, and
therefore is difficult to interpret in a causal way (as was the style). However, it’s a perfectly
good uninterpreted dimensionality reduction technique.

~Zn ∼ Nq(~O, I) (13)

where:

Z is the low-dimensional space we’re trying to project into

~0 is a vector of zeros

I = the identity matrix

~Xn ∼ Np(µ + Λz,Ψ) (14)

where:

µ is the mean, a (q x 1) vector

Λ is a (p x q) matrix

Ψ is diagonal, i.e. all the components are independent

Let’s assume a zero mean for simplicity from now on.

~Xn ∼ Np(Λz,Ψ) (15)

In PCA:

X = Z1
~λ1 + Z2

~λ2 + ... + Zq
~λq (16)

where:

3



~Z is the low-dimensional representation of ~X

On the other hand, in factor analysis, each component can have its own variability and
these λ’s don’t have to be orthogonal:

X ∼ N(Z1
~λ1 + Z2

~λ2 + ... + Zq
~λq,Ψ) (17)

Now, imagine we’re trying to project a 3D space onto a 2D plane.

p = 3, q = 2 (18)

In other words, we’re assuming that there are 2 ‘factors’, but your data are in a 3rd dimen-
sion as a result of noise. The Z’s reflect common sources of variation amongst the data and
account for its correlation structure. Uncorrelated ~ǫs are unique to each diension and pick
up remaining variation that’s not accounted for.

The covariance matrix is going to define some kind of sphere or ellipsoid. We can contrast
this with PCA which requires the covariance to be a sphere, since the components all have
the same variability in the lower dimensional space.

The joint distribution of (~Z, ~X) is a (p + q)-dimensional Gaussian.

µJ =< ~0q,~0p > (19)

ΣJ =

[

I ΛT

Λ ΛΛT + Ψ

]

where:

I is var(Z)

Λ is cov(Z,X)

ΛT is cov(X,Z)

ΛΛT + Ψ is var(X)

From this, we know that:

~X ∼ N(~0, ΛΛT + Ψ) (20)

~Z| ~X ∼ N(ΛT (ΛΛT + Ψ)−1~x, (I + ΛT Ψ−1Λ)−1) (21)

Reminder: we’re assuming that the low-dimensional components are independent, although
of course ~zn|~xn are not independent.
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2.1 Estimating Λ with EM

Notice that:

xn = Λzn + ǫ (22)

This looks just like linear regression. If we knew Z, we’d simply be doing multivariate
regression - but we don’t, so we’re going to use EM to find Λ and Ψ.

2.1.1 E-step

Compute:

p(~Zn| ~Xn,Λ,Ψ) (23)

2.1.2 M-step

Calculate the MLE with

~Zn, ~Zn
~ZT

n (24)

replaced by their posterior expectations:

Λ̂ = (
N

∑

n=1

(~xnE[zn|xn]T )) + (
N

∑

n=1

E[znzT
n |xn])−1 (25)

In linear regression, you’ve observed the covariates, but in the M-step, you replace those
with the expectations you computed in the E-step.
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