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1 A Density Estimation Problem: Modelling the Habitat of
Plant and Animal Species

Conservation biologists are often concerned with modeling the population distribution of
plants and animals. In particular, our problem is concerned with modeling the population
distribution of a particular species across a grid map.

1.1 Description of Data

In this problem, two types of data will be available. The first type of data we will have is
called presence records. Presence records are pixels on the grid map where the species
of concern was observed. The same pixel may be present multiple times if the species was
observed more than one time within that pixel. The second type of data we will have is
called environmental variables. Each environmental variable will contain information
such as average rain fall on a particular pixel. Environmental variable data are available
for each pixel on the grid map.

This problem is not simply one of classifying each point on the map as a habitat or
a non-habitat, because we have only positive examples and no negative examples. Just
because the biologist did not observe the species at a particular location does not enable us
to label that location as non-habitat.

1.2 Formal Definition of Variables

We will define the following set of variables:

• X is defined as the set of all pixels or locations on the grid map.

• |X| is the size of cardinality of the set X. This value is generally very large, ranging
from tens of thousands to millions.

• x1, ..., xm ∈ X are the set of pixels that are included as the presence records. Note
that the xis are not necessarily distinct.

• f1, ..., fn is defined as the set of features. Each fj is defined for all pixels on the grid
map, i.e. fj : X → <.

• π is defined as the true distribution of the species. In other words, π(x) is the fraction
of the population living at pixel x ∈ X.

The set of features includes the environmental variables, but it may also contain ad-
ditional functions derived from the environmental variables such as the average rainfall
squared.



1.3 Assumptions

We assume that the set of presence records x1, ..., xn is chosen i.i.d. according to π. This
means that π(x), the probability that x will be chosen as a presence record, is proportional
to the population living at x

Unfortunately, the assumptions may affect our model’s ability to approximate the real
world for a number of reasons. First, we have assumed implicitly that the true distribution
π does not change with time. This may not be realistic since π may in fact change with day
and night cycles and with seasonal cycles. We have also assumed that there is no sample
bias. This assumption means that the biologist sampled all the points in X with equal
diligence. This, however, may not be the case since some locations are definitely harder to
access than others.

It may also be noted that even the assumption that the presence records xi are inde-
pendent may be suspect since it may be that a biologist is more likely to sample a nearby
location after having observed a butterfly in the present location.

2 Approach One: Maximum Likelihood Estimation

To solve this problem, our goal is to create an estimate of π, call it π̂. One method of
attack is to use Maximum Likelihood Estimation. To proceed, we need to first express π̂ in
a parametric form. We may begin by choosing a linear parametric form:

π̂(x) =
n∑

j=1

λjfj(x).

However, there are several problems with this simple formulation. First, the values π̂(x)
may not lie in [0, ]). Since π̂(x) represent proportions, it would make little sense for them
to take on negative values or values greater than one. Also,

∑
x∈X π̂(x) may not equal one.

Again, this equality is required because π̂(x) represent proportions.
As a result, we may choose to transform the simple linear form to an exponential form

and set π̂(x) equal to:

qλ(x) =
exp

(∑n
j=1 λjfj(x)

)
Zλ

.

Here Zλ is chosen so that
∑

x qλ(x) = 1. This form has the advantage that it is strictly
positive and lies [0, 1]. To maximize the likelihood function, then, we would choose π̂ to be
equal to qbλ where:

λ̂ = arg maxbλ
m∏

i=1

qbλ(xi)

= arg maxbλ
m∑

i=1

ln qbλ(xi).

This last equation turns out to be concave in λ, which means there exist efficient methods
for solving it.

There are a few problems with this maximum likelihood estimation. One problem is
that this estimation technique is prone to overfitting especially if the number of features
is large. Another problem is that the transformation of the linear model seems somewhat
arbitrary. Therefore, we will next explore a different approach to this problem.
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Figure 1: average of features over presence records

3 Approach Two: Entropy Maximization

Before we proceed, we make the following definitions. We define the sample average of
the features as the average of a feature over all presence records. (see figure 1 above).
Mathematically, we define

Ê[fj ] =
1
m

m∑
i=1

fj(xi).

Also, we define the true expection of the features as

Eπ[fj ] =
∑
x∈X

π(x)fj(x).

In general, we would expect Eπ[fj ] ≈ Ê[fj ] for all j. We may then have as our constraints
for estimating π that

Ebπ[fj ] = Ê[fj ] ∀j.

These constraints, in general, do not reduce the possible choices for π̂ to 1. As a result, we
need other constraints to narrow down our choices.

For example, if we were to estimate π with no information nor data of any kind, then
the most intuitive estimate for π is a uniform distribution. Therefore, we can choose to
have as our goal the selection of π̂ that is as close to the uniform distribution as possible
while still satisfying a set of constraints.

Closeness to the uniform distribution may be measured by entropy H:

H(π̂) = −
∑
x∈X

π̂(x) ln(π̂(x)).

It can be shown that H is never negative, and that it is maximized when π̂ is uniform.
This maximization follows the principle of maximum entropy. Namely, when modelling a
distribution, we should maximize the entropy subject to constraints representing what we
know about the distribution. So our problem now is to find π̂ that maximizes H(π̂) and
such that

Ebπ[fj ] = Ê[fj ] ∀j
π̂(x) ≥ 0∑

x∈X

π̂(x) = 1.
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Note that here, π̂ is not parametrized but is instead manipulated directly.
The entropy function turns out to be concave and the constraints are linear. As a result,

we know that there is a local maximum which is also the global maximum.
We may solve this maximization problem using lagrange multipliers:

L =
∑
x∈X

π̂(x) ln π̂(x)−
n∑

j=1

λj

(∑
x∈X

π̂(x)fj(x)− Ê[fj ]

)
+ γ

(∑
x∈X

π̂(x)− 1

)
.

Solving this equation by setting ∂L
∂bπ(x) = 0 for each x ∈ X, we get

π̂(x) =
exp

(∑n
j=1 λjfj(x)

)
Zλ

.

But this is the same estimate that we obtained by maximum likelihood estimate!
Furthermore, if we plug π̂(x) back in to the expression for L we get

L =
1
m

m∑
i=1

ln qλ(xi).

So L is the same as the objective for the maximum likelihood estimate! The two methods
are identical and give the same estimate.

Unfortunately, as a result, this method also suffers from the problem of overfitting. It
also seems odd to require that Ebπ[fj ] = Ê[fj ] given that Ebπ[fj ] is only approximately equal
to Ê[fj ].

3.1 Relaxing the constraints

We can overcome both of these difficulties by relaxing the constraints used in the maximum
entropy formulation. Through VC theory and some other techniques, we can in general
obtain bounds of the form

|Eπ[fj ]− Ê[fj ]| ≤ βj .

We may then use this inequality to replace the previous equality constraint. When we solve
the lagrangian equation now, we will still obtain an estimate of π of the same form qλ, but
our objective will now have the form:

L =
1
m

m∑
i=1

ln qλ(xi)−
n∑

j=1

βj |λj |.

The second term is a penalty term known as a lasso or L1-regularization. As discussed
previously, L1-regularization is well suited to decrease overfitting when there are many
features and some features are irrelevant for the classification task at hand.

4 Application to Conservation Biology

Modeling the distribution of a species is important for many reasons such as selecting
an appropriate environment for a reserve that protects endangered species. The model as
discussed above will also be useful for predicting how environmental changes such as climate
changes will impact a particular species. Finally, the model above has been used to actually
discover new species of animals.
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Figure 2: effectiveness of max entropy v.s other techniques

4.1 Modeling bake-off

Figure 2 shows the effectiveness of the max entropy approach with relaxed constraints in
modeling the population distribution of various species, and compares it to other effective-
ness of other approaches. The results for the graph were obtained during a modeling bake
off. The effectiveness of the various approaches were measured by AUC, with 1 being a
best. As we can see, the max entropy approach was a fairly effective model.

All the algorithms performed poorly, however, for the modeling population distribution
in Canada, as can be seen in figure 3. The reason for this poor performance is severe sample
bias. Biologists tended to sample warmer areas much more than colder areas of Canada.
Removing this bias increased the effectiveness of max entropy greatly (see figure 4).

4.2 Discovering New Species

The biologist Raxworthy and his colleagues used the max entropy algorithm to model the
population distribution of several species of gekkos and chameleons on Madagascar. The
algorithm predicted the presence of these species in certain areas of the island that had not
been closely investigated. When biologists investigated these areas, they discovered many
new species.
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Figure 3: effectiveness of max entropy and other techniques for the canadian data

Figure 4: effect of removing biase on the max entropy algorithm
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