COS 424: Interacting with Data

Lecturer: David Blei Lecture 4/12/2007 #19
Scribe: Joseph Perla

1 Summary of Last Lecture

Let’s begin by restating the problem from the previous lecture.

We have data {x1,---,x,} with each vector z; being p-dimensional. We want to trans-
form that into {\1, -+, A, } with each vector \; g-dimensional. ¢ < p.

We reduce the dimensionality of the data.

2 PCA

Now let’s talk about PCA and it’s probabilistic interpretation. Say we are trying to reduce
two-dimensional data to one dimension. Each 2D data point can be projected onto a
subspace which is a line. How do we find the subspace onto which the two-dimensional data
will be projected? Well, we can find the sum of squared distance (i.e. reconstruction error)

from the data to its projection on the subspace.
So,

FO) = 1+ Veh

Now, p is a p-dimensional vector which represents the offset in p-space. V; is a pzq
matrix, with q orthogonal unit vectors. Its ¢ vectors are the principal components of the
data. A\ is the g vector. For example, if you are projecting onto a line, then a A will be
scalar and a high lambda will be further along the line.

Vg is the projection onto g-space.

Given this, we try to minimize ssd (N is the number of data points):
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And we can predict, from ¢ =1,---, N that
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This is intuitive if you think about it geometrically.
To make the maths a bit easier, let us first center the data:
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we substract the mean of the z’s from each x,,.



After centering the data,
N
miny, Y ||z — (Vohi)l|”
i=1

and
N 2
miny, Y |lzi — (VV =)
i=1

since, when optimized, \; = Vqu‘i and p = 0.

3 SVD

V2 is the solution plane. We can solve this optimization using SVD (singular value decom-
position).

X =UDpvVT

X = data matrix, ¢ X p

U = n x p orthogonal matrix (orthogonal meaning UTU = I)

D = p x p, a diagonal matrix where dy > dy > d3 > --->d, >0

VT = p x p orthogonal matrix

Basically, make the following equations linearly independent. In signal processing this
is known as “whitening”:

21 = u11d101 + u12d2v2 + - - - + uipdyvp

—

i) ugldlv_i + UQQdQU_é + -+ qudpv_z',

TN = un1d10] + un2da03 + - - - + unpdypvy
So, we end up with

AL = u11d1v1 + u12dov3 + - - 4 u14dy Uy

A2 = u21d1V7 + ugadaVs + - - - + UgqdyUg

AN = un1di0] + unadath + - -+ + UNgdqUqg

Since the rows are independent, we can throw away some of U’s columns, D’s rows
and columns, and V’s rows and columns when we find the A’s. Moreover, D contains the
variance at each V7', and remember that the values in the diagonals of D are in descending
order. So, cutting off the lowest ones leaves only the dimensions which contribute the most
to the observed data.

How do you choose ¢, the number of dimensions to reduce to? This is a hard problem.
You would probably use techniques similar to ones used in K-Means.



4 Probabilistic PCA

From a high-level, we're going to generate some data from many low-dimensional gaussian
distributions. Then, you project that into your high-dimensional space. Notice how this is
a generative process.

So, let Z N(0,1). Take a simple two-Gaussian distribution:

z1 N1 Z,0%)

x9 N(VaZ,0?)

The variance o2 is determining how far away you fall - it’s related to the reconstruction
error.

Finding V; and Vs is the same as normal PCA. PCA = MLE of V. This draws the
connection between PCA and Factor analysis.

If you want to reinterpret standard PCA in probabilistic terms, need to use a gaussian
distribution. On the other hand, you can consider extensions to this model that relax the
gaussian assumption.

5 Multivariate Gaussian Distribution

Consider the previous notes about multivariate gaussians.
We have the parameters:
mean p which is a p-dimensional vector where each is the E[X;] where X = (p x 1)
random vector some distribution with the covariance matrix below.
covariance matrix X > 0,p Xp matrix that is positive definite, i.e. positive and invertible.
Now, each o;; in ¥ is the covariance bewteen the ith and jth components. i.e.

045 = E[ZEZ:E]] — E[:L‘l]E[SL'j]

and, logically, the diagonal values of ¥ are just the variances of each dimension (where
i==j):
Oij = E[%Q] - E[$z]2

Thus, very importantly, the probability of each datapoint can be calculated, using knowl-
edge of the guassian equation, according to the following:

p(7|E,2) = (21)"2|B[/2e~ V2@ TR (#-1)

Basically, you try to maximize the probability. How do we do this? MLE of course.

Data are {21, -, 2N}, N p-dimensional vectors. MLE of
N
fi=1/NY_an,
n=1

S =1/NSN (0 — @) (an — )"

The MLE of p is intuitive, just the average of the vectors. The MLE of ¥ is just the
eigenvectors of 3, the principal components of the multinomial covariance. Ths is what
PPCA finds.



If we graph some 2D data, then we can see what ¥ might contain. If the graph cloud of
points is circular, or is only stretched vertically or horizontally, then clearly the covariance
between dimensions is small or non-existant. Only the diagonals of ¥ are filled.

Otherwise, the cloud is stretched diagonally in some way. The eigenvectors of ¥ would
follow these major stretches. In addition, not just the diagonal of ¥ will be filled with
non-zero values. This would show some covariance between dimensions.



