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1 Summary of Last Lecture

Let’s begin by restating the problem from the previous lecture.
We have data {x1, · · · , xn} with each vector xi being p-dimensional. We want to trans-

form that into {λ1, · · · , λn} with each vector λi q-dimensional. q < p.
We reduce the dimensionality of the data.

2 PCA

Now let’s talk about PCA and it’s probabilistic interpretation. Say we are trying to reduce
two-dimensional data to one dimension. Each 2D data point can be projected onto a
subspace which is a line. How do we find the subspace onto which the two-dimensional data
will be projected? Well, we can find the sum of squared distance (i.e. reconstruction error)
from the data to its projection on the subspace.

So,

f(λ) = µ + Vqλ

Now, µ is a p-dimensional vector which represents the offset in p-space. Vq is a pxq
matrix, with q orthogonal unit vectors. Its q vectors are the principal components of the
data. λ is the q vector. For example, if you are projecting onto a line, then a λ will be
scalar and a high lambda will be further along the line.

Vqλ is the projection onto q-space.
Given this, we try to minimize ssd (N is the number of data points):

minµ,λ,Vq

N∑
i=1

||xi − (µ + Vqλi)||2

And we can predict, from i = 1, · · · , N that

µ̂ =
1
N

N∑
i=1

xi

and
λ̂i = V T

q (xi − µ̂).

This is intuitive if you think about it geometrically.
To make the maths a bit easier, let us first center the data:

xn=̂xn − µ̂

we substract the mean of the x’s from each xn.



After centering the data,

minVq

N∑
i=1

||xi − (Vqλi)||2

and

minVq

N∑
i=1

||xi − (VqV
T
q xi)||

2

since, when optimized, λi = V T
q xi and µ = 0.

3 SVD

V q is the solution plane. We can solve this optimization using SVD (singular value decom-
position).

X = UDV T

X = data matrix, q × p
U = n× p orthogonal matrix (orthogonal meaning UT U = I)
D = p× p, a diagonal matrix where d1 ≥ d2 ≥ d3 ≥ · · · ≥ dp ≥ 0
V T = p× p orthogonal matrix
Basically, make the following equations linearly independent. In signal processing this

is known as “whitening”:

~x1 = u11d1 ~v1 + u12d2 ~v2 + · · ·+ u1pdp ~vp

~x2 = u21d1 ~v1 + u22d2 ~v2 + · · ·+ u2pdp ~vp
...

~xN = uN1d1 ~v1 + uN2d2 ~v2 + · · ·+ uNpdp ~vp

So, we end up with

~λ1 = u11d1 ~v1 + u12d2 ~v2 + · · ·+ u1qdq ~vq

~λ2 = u21d1 ~v1 + u22d2 ~v2 + · · ·+ u2qdq ~vq
...

~λN = uN1d1 ~v1 + uN2d2 ~v2 + · · ·+ uNqdq ~vq

Since the rows are independent, we can throw away some of U’s columns, D’s rows
and columns, and V’s rows and columns when we find the λ’s. Moreover, D contains the
variance at each V T , and remember that the values in the diagonals of D are in descending
order. So, cutting off the lowest ones leaves only the dimensions which contribute the most
to the observed data.

How do you choose q, the number of dimensions to reduce to? This is a hard problem.
You would probably use techniques similar to ones used in K-Means.
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4 Probabilistic PCA

From a high-level, we’re going to generate some data from many low-dimensional gaussian
distributions. Then, you project that into your high-dimensional space. Notice how this is
a generative process.

So, let Z N(0, 1). Take a simple two-Gaussian distribution:

x1 N(V1Z, σ2)

x2 N(V2Z, σ2)
The variance σ2 is determining how far away you fall - it’s related to the reconstruction

error.
Finding V1 and V2 is the same as normal PCA. PCA ≡ MLE of V. This draws the

connection between PCA and Factor analysis.
If you want to reinterpret standard PCA in probabilistic terms, need to use a gaussian

distribution. On the other hand, you can consider extensions to this model that relax the
gaussian assumption.

5 Multivariate Gaussian Distribution

Consider the previous notes about multivariate gaussians.
We have the parameters:
mean µ which is a p-dimensional vector where each is the E[Xi] where X = (p × 1)

random vector some distribution with the covariance matrix below.
covariance matrix Σ � 0,p ×p matrix that is positive definite, i.e. positive and invertible.
Now, each σij in Σ is the covariance bewteen the ith and jth components. i.e.

σij = E[xixj ]− E[xi]E[xj ]

and, logically, the diagonal values of Σ are just the variances of each dimension (where
i == j):

σij = E[x2
i ]− E[xi]
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Thus, very importantly, the probability of each datapoint can be calculated, using knowl-
edge of the guassian equation, according to the following:

p(~x|~u, Σ) = (2π)n/2|Σ|1/2e−1/2(x̄−û)T Σ−1(~x−~u)

Basically, you try to maximize the probability. How do we do this? MLE of course.
Data are { ~x1, · · · , ~xN}, N p-dimensional vectors. MLE of

µ̂ = 1/N
N∑

n=1

~xn

Σ̂ = 1/N
∑N

n=1(xn − µ̂)(xn − µ̂)T

The MLE of µ is intuitive, just the average of the vectors. The MLE of Σ is just the
eigenvectors of Σ, the principal components of the multinomial covariance. Ths is what
PPCA finds.
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If we graph some 2D data, then we can see what Σ might contain. If the graph cloud of
points is circular, or is only stretched vertically or horizontally, then clearly the covariance
between dimensions is small or non-existant. Only the diagonals of Σ are filled.

Otherwise, the cloud is stretched diagonally in some way. The eigenvectors of Σ would
follow these major stretches. In addition, not just the diagonal of Σ will be filled with
non-zero values. This would show some covariance between dimensions.
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