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Recapitulation of Last Lecture

In linear regression, we need to avoid adding too much richness to the model. Therefore we
need feature selection, or regularization to make our fitting curve smoother. Qualitatively,
the original linear regression model is an optimization problem of the form

min
w

m∑

i=1

(w · xi − yi)2

And the corresponding regularized version of the same problem is

min
w

m∑

i=1

(w · xi − yi)2 + λ‖w‖2
2,

which is also called Ridge Regression. The larger λ is, the smoother, or ”simpler” the fitting
curve is.

1 Probabilistic View of Regression

A Little Digression: An Introduction to MAP Estimation

Maximum a posteriori (MAP) estimation is a method to estimate parameters by maximizing
the posterior probability of the observation.

A brief review of Maximum Likelihood Estimation (MLE) facilitates our derivation of
MAP. First, define

• θ a set of parameters (unknown)

• D data (observed)

• Pr [D|θ] the likelihood function, determined by the model of regression, i.e. how the
data are generated, given the parameters.

Then the MLE of the parameters θ̂ is

θ̂ = arg max
θ

Pr [D|θ].

If we meditate over the MLE of the parameters, it seems to be paradoxically ”backwards”.
Intuitively, we are given the parameters (or, nature predefines the parameters), and then
the observations are generated accordingly. However, in MLE, we are trying to maximize
the probability of the parameters, which are given and fixed, instead of maximizing the
probability of the observation! If we change our philosophy and do the opposite thing, i.e.
maximize the probability of observation, we are on the track to MAP.



Mathematically speaking, the MAP estimation is given by

θ̂ = arg max
θ

Pr [θ|D]

And Bayes Formula says

Pr [θ|D] =
Pr [D|θ]Pr[θ]

Pr [D]
where Pr [θ|D] is called posterior probability (or, interchangeably, a posteriori probability),
Pr [D|θ] is the likelihood, Pr [θ] is called prior probability (or, interchangeably, a priori
probability) and Pr [D] stands for the probability of data, which is a constant irrelevant to
θ.

It is weird to think of parameters θ as random variables, because usually we believe
that parameters are fixed before observation. However, we can also interpret probability as
degree of belief or uncertainty. Actually, this is the watershed that separates the Bayesian
philosophy from the classical ones.

The basic idea of MAP is simple: maximize the posterior probability of the observation.
In order to do this, we introduce the concept of a priori probability. MAP estimation is
advantageous when the data set is small and the result of estimation heavily depends on
our prior knowledge of the parameters. Yet when the data set is large enough, the effects of
prior probability are washed out by the data, hence MAP does not make much difference
from MLE.

Regularization in Perspective of MAP

Ridge regression can be interpreted as a form of MAP estimation. First, assume the distri-
bution of Y given X and w is

Y |X, w ∼ N(w · x, σ2)

where σ2 is a fixed value of variance.
Apply MAP to estimate the parameters, then we need x, y and the prior of w. We

assume
wj ∼ N(0, σ2

0), (j = 1, . . . , n)

and wj , (j = 1, . . . , n) are generated independently. Or, more concisely

w ∼ N(0, σ2
0I).

Then the probability density function of w, given (X, Y ) is

p(w|(x1, y1), . . . , (xm, ym))

=
p(y1, . . . , ym|w, x1, . . . , xm)p(w|x1, . . . ,xm)

p(y1, . . . , ym|x1, . . . , xm)

∝
m∏

i=1

[
1√
2πσ

exp
(
−(wi · xi − yi)2

2σ2

)]
· 1
(
√

2πσ0)n
exp

(
−‖w‖

2
2

2σ2
0

)
.

Hence the log likelihood function is given by

log (p(w|(x1, y1), . . . , (xm, ym)))

= C − 1
2σ2

m∑

i=1

(wi · xi − yi)2 − 1
2σ2

0

‖w‖2
2

2



where C is a constant. Therefore, the MAP of the parameter is

ŵ = arg max
w

log (fw|(x1,y1),...,(xm,ym))

= arg min
w

1
2σ2

m∑

i=1

(wi · xi − yi)2 +
1

2σ2
0

‖w‖2
2

= arg min
w

m∑

i=1

(wi · xi − yi)2 + λ‖w‖2
2

where λ = σ2/σ2
0.

Conclusion: Regularization can be interpreted as a form of MAP estimation. For dif-
ferent a priori distribution, we have different forms of regularization terms. Note that
regularization is not scale invariant.

2 Other Methods of Regularization

Although independent Gaussian prior is often used, we have some other methods of regular-
ization, which can be quite useful under different situations. One of the most commonly used
methods is called L1-Regularization, or Lasso Regularization, specified by the optimization
problem

min
w

m∑

i=1

(w · xi − yi)2 + λ‖w‖1.

This type of regularization corresponds to a different prior distribution — Laplacian
distribution, specified by exp (−C‖w‖1), where ‖w‖1 =

∑n
j=1 |wj |.

Remarks on Lasso Regularization:

• Advantages: Lasso Regularization, with properly selected λ, usually leads to very
sparse estimated vector ŵ, i.e. a large number of components of vector ŵ turn out to
be zeros. When the dimension of the problem n is very large, Lasso Regularization is
preferable because it can effectively reduce the number of parameters from numerous
available features.

• Disadvantages: Lasso Regularization can be cumbersome in theoretical analysis, owing
to the awkward indifferentiablility of the absolute value function. Practically, it is also
somewhat more challenging to implement.

3 Interpretation and Choice of λ

The parameter λ is one of the most significant parameters in regularization. It controls the
trade-off of many aspects of the problem.

In classification problems, we are always facing a trade-off between minimizing the train-
ing error and generating a simpler classifier. Here in regression, λ controls a similar trade-off
between the fit to the data of the fitting curve and the smoothness of the fitting curve. This
fact is demonstrated in Figure 1.

Observations on Figure 1: When λ is large, we have very bad fit and good smoothness,
i.e. the overall fit is very poor, but the performance of any individual curve is similar to
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Figure 1: Illustration of the dependence of bias and variance on model complexity, governed
by a regularization parameter λ, using a sinusoidal data set. There are L = 100 data sets,
each having N = 25 data points, and there are 24 Gaussian basis functions in the model
so that the total number of parameters is M = 25 including the bias parameter. the left
column shows the result of fitting the model to the data sets for various values of lnλ
(for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets
were generated (green).
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one another; on the contrary, when λ is small, we have very good fit yet bad smoothness,
i.e. the overall fit is good yet the performance of any individual curve fluctuates wildly.

Actually, we can quantitatively describe the observation above, and find out the math-
ematical expression for the “fit to the data” and “smoothness”.

Define f̂S(x) as an estimation to f(x) = E[Y |X], and f̂S depends on the sample S, i.e.
(x1, y1), . . . , (xm, ym). Then define g(x) as the average of all the fitting curves (expectation
over the samples)

g(x) = ES [f̂S(x)]

Then we can use this concept to decompose the estimation error further. In the expression

E[(f̂(X)− Y )2] = E[(Y − f(X))2] + E[(f̂(X)− f(X))2]

the term E[(Y −f(X))2] stands for the intrinsic noise and the other term E[(f̂(X)−f(X))2]
can be further decomposed. The overall performance

EX,Y,S [(f̂S(X)−Y )2] = EX,Y [(Y −f(X))2]+EX [(g(X)−f(X))2]+EX,S [(f̂S(X)−g(X))2]

where EX,Y [(Y −f(X))2] stands for the intrinsic noise (irrelevant to sample S), EX [(g(X)−
f(X))2] stands for how good the average of all the estimator is (this term is called (bias)2),
and EX,S [(f̂S(X)−g(X))2] stands for the variance of the estimator. In Figure 1, the (bias)2

can be interpreted as the difference between the green curve (real model) and the red curve
(average performance of all the estimators), and the variance can be interpreted as the
average difference between an individual red curve and the average of all the red curves.

The typical relationships between parameter λ and (bias)2, variance, noise and error are
illustrated in Figure 2.

Figure 2: The relationship between λ and (bias)2, variance, noise, and error. The variance is
monotonously decreasing with respect to λ, and the bias is increasing. The noise (intrinsic)is
irrelevant to λ. And the error is the sum of bias, variance and noise, hence it has a ”U”
shape with respect to λ. In practice, we are seeking the lowest point of the error curve,
which corresponds to the optimal value of λ.

Owing to the ”U” shape of the error curve with respect to λ, we are facing a problem of
how to find the optimal value of λ that minimizes the error. Here we introduce a method
called 10-fold Cross Validation. This algorithm can be described as follows:
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1. Divide the data evenly into 10 random, disjoint blocks.

2. For j = 1, 2, . . . , 10, hold out the jth block as the test set, using the rest as the training
set, and calculate the jth empirical error.

3. Calculate the average of the 10 individual errors and get the empirical error.

4. Find the value of λ that minimizes the empirical error.

4 Logistic Regression

Formulate the Problem

Actually, a number of classification algorithms can be generalized to regression, including
Decision Tree Algorithm, K-nearest Neighbors Algorithm, etc. We stop our discussion of
linear regression and switch to another type of regression.

In classification problems, we simply want the test error to be small. However, in some
cases, we need to estimate the probability of some events, say, the presence of precipitation
tomorrow, or the existence of a disease. In other words, instead of simply classifying the
data points, we intend to estimate the probability of the data points being in each class.

Here is our basic model:Given data X, Y , i.e. (x1, y1), . . . , (xm, ym),where X ∈ Rn and
Y ∈ {0, 1} or {−1, 1}. Then we want to estimate Pr[Y |X].

As in the case of linear regression, the problem can be simplified into the optimization
problem

min
w

m∑

i=1

(w · xi − yi)2

where xi ∈ Rn and yi ∈ {0, 1}.This approach makes sense because

E[(w ·X − Y )2] = E[(w ·X − f(X))2]
= E[(w ·X − E[Y |X])2]
= E[(w ·X − Pr[Y = 1|X])2].

Therefore the above approach is tantamount to assuming

Pr[Y = 1|x] ' w · x.

It turns out that we impose a restriction on w · x, namely, w · x ∈ [0, 1], which may not
always be true. Moreover, since Y ∈ {0, 1}, the noise is far from being Gaussian, as required
by our linear model.

It is true that this linear model is still used in many occasions, due to many preferable
properties of linearity. However, we can conceive another method by squashing all the real
numbers into the range of [0, 1], hence remove the restriction on w · x, because in this case

Pr[Y = 1|x] ' σ(w · x).

So we need to find a function that maps all the real numbers into [0, 1]. The function

σ(z) =
1

1 + e−z
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Figure 3: The sigmoidal shaped function 1/(1 + e−z)

is our favorite choice, as shown in Figure 3.
The function σ(z) has many desirable properties. One of the most useful one is

σ(−z) = 1− σ(z).

Now we switch to the Y ∈ {−1, 1} system. Then

Pr[Y = −1|x] = 1− σ(w · x) = σ(−w · x).

Therefore
Pr[Y = y|x] = σ(y w · x).

Solve the Problem: Estimate w

Now we are facing an optimization problem

min
w

m∑

i=1

(σ(w · xi)− yi)2.

Unfortunately the objective function is not convex and lots of local minima exist. Moreover,
the assumption that Y |X is Gaussian is inappropriate here. All these lead to a highly
undesirable problem to solve. Notwithstanding these facts, people still use it a lot.

However, instead of solving the above problem, we try to solve

ŵ = arg max
w

m∏

i=1

Pr[yi|xi, w]

= arg max
w

m∑

i=1

log (Pr[yi|xi,w])

= arg min
w

−
m∑

i=1

log (σ(yi w · xi))

= arg min
w

m∑

i=1

log (1 + exp (yi w · xi)).
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Finally, we come up with an elegant optimization problem:

ŵ = arg min
w

m∑

i=1

log (1 + exp (yi w · xi))

and the estimation of the probabilities are given by

Pr[Y = 1] = σ(w · x)
Pr[Y = −1] = σ(−w · x).

This is called Logistic Regression. It possesses many desirable properties, as listed below:

1. The objective function is convex in variable w , so there are no local minima.

2. Notice the term yi w · xi, which represents the margin. This means that Logistic
Regression is also a margin based algorithm, like SVM.

3. Since Logistic Regression is based on a linear combination of the inputs, it can be
combined with a number of methods, including regularization, the kernel trick, basis
expansions, etc.

Owing to the properties above,Logistic Regression is widely used and turns out to be very
effective.

Moreover, Logistic Regression can also be used as an classification method. The algo-
rithm is described as follows:

Given x, predict y = +1 if σ(w ·x) > 1/2, or, equivalently, w ·x > 0. Otherwise,
predict y = −1.

From the algorithm above, we conclude that Logistic Regression builds up a linear
classifier, like SVM.

The connection between Naive Bayes and Logistic Regression is to be explored in the
next lecture.
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