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Recall from previous lecture that in regression we are trying to predict a real value
given our data. Speci�cally, in the New Jersey school district example discussed in class,
we looked at a linear model f̂(xi) = wxi where we related xi enrollment in district i and
tried to predict the budget yi for district i based on w the money spent per student. In
general, we would like to handle multiple dimensions or �t a more complex model to the
data.

1 Linear Regression

To generalize our original model we start with a vector x ∈ Rn where n is the dimensionality
of the data. We use the notation xi(j) to denote the jth component of the ith vector xi.
We can write all of the components of

xi = 〈xi(1), . . . , xi(n)〉

which are referred to as variables, predictors, features or attributes - depending on the data
we are interested in modelling. In general, the linear model will look as follows

f̂(x) = w1x(1) + wwx(2) + . . . + wn(n) = w · x

where n is the dimensionality of the data. To �t our model we want to minimize

m∑
i=1

(
f̂(xi)− yi

)2
=

m∑
i=1

(w · xi − yi)
2

where m is the number of data points. The process of �tting this model is called linear

regression.
If we look back at the New Jersey school district data, we might want to model w0 the

�xed cost for students as well as w1 the cost per student. Consequently, we should �t the
model

f̂(xi) = w0 + w1xi

to our data set where xi is the enrollment in the district. To �t this model we use a trick
where we replace each data point with a 2-dimensional vector xi → 〈1, xi〉. It is easy to see
that when we add 1 as the �rst dimension of each vector xi, we obtain the model above.

When we �t the model to the data, we obtain w0 = −3, 540, 476 for the �xed cost for
students and w1 = 12, 054 for the cost per student. The �xed cost number makes little
sense. We can �x this by allowing for larger variance in the cost for school districts and



we obtain w0 = 99, 138 for the �xed cost for students and w1 = 12, 054 for the cost per
student. This illustrates one of the many ways we can adjust our data so that we obtain a
model that is a better �t for our data.

We can take this further and consider a model where we account for the higher cost of
special education students

f̂(xi) = w0 + w1xi(1) + w2xi(2)

where xi(1) is the number of regular students and xi(2) is the number of special education
students in district i. When we �t our model we prepend one to the vector 〈xi(1), xi(2)〉 →
〈1, xi(1), xi(2)〉 to account for w0 the �xed cost for students. With this higher dimensional
model we get w0 = 154, 192 for the �xed cost for students and w1 = 8, 495 for the cost per
regular student and a larger w2 = 35, 288 cost per special education student.

2 Linear Model

Now we consider the general problem of �tting a vector

w =

 w1
...

wn


to data. To do so we de�ne a matrix

X =


x1

x2
...

xm


that has m rows and n columns where m is the number of data points and n is the dimen-
sionality of the data. Thus, the ith row of X is equal to the data vector xi. We also de�ne
a vector

y =

 y1
...

ym


where yi is the predicted value associated with the ith data vector xi.

With these de�nitions we can rephrase the minimization in terms of matrices and vectors

Xw − y =

 w · x1 − y1
...

w · xm − ym
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The Euclidean length squared, or L2-norm, of the vector on the right hand side is just our
original objective for linear regression

m∑
i=1

(w · xi − yi)
2 = ‖Xw − y‖2

2 (1)

We can minimize this objective by multiplying out the norm

min
w

(Xw − y)> (Xw − y) = min
w

w>X>Xw − 2w>X>y + y>y

and computing the gradient

5w = 2X>Xw − 2X>y = 0

and setting it equal to zero. Now we can solve for w by computing the inverse(
X>X

)
w = X>y

w =
(
X>X

)−1
X>y

The n by m matrix
(
X>X

)−1 X> is referred to as the pseudo-inverse. Of course, there is no

guarantee that the pseudo-inverse will exist. It only exists when
(
X>X

)−1
is non-singular,

and in this case, the solution w is unique. However, even when X>X is singular, there are
techniques for computing the minimum of equation (1).

It is not all that limiting to use just a linear model. Many problems can be reduced to
the linear case. In this lecture we considered two: the polynomial model and linear splines.

2.1 Fitting Polynomials

We can use linear models to �t polynomial models. In Figure 1, we �t a cubic model

f̂(x) = w0 + w1x + w2x + w3x
3

by mapping each data point to a vector xi →
〈
1, xi, x

2
i , x

3
i

〉
and �tting a linear model as

described above. If the data is in n > 1 dimensions and we want to �t a polynomial we use
a similar mapping. For instance, for n = 2 we can �t a quadratic

f̂(x1, x2) = a + bx1 + cx2 + dx1x2 + ex2
1 + fx2

2

using the mapping 〈x1, x2〉 →
〈
1, x1, x2, x1x2, x

2
1, x

2
2

〉
. In general, if we start with n di-

mensions and want to �t a degree k polynomial we will need to map our data up to
O(nk) dimensions. As with SVMs we can solve the problem of explicitly mapping data
vectors in higher dimensions by using the Kernel trick where we replace an inner product
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Figure 1: We can use linear regression to do polynomial regression. To �t a cubic polynomial
to each data point xi we map the data point to a vector xi →

〈
1, xi, x

2
i , x

3
i

〉
.

xi · xj = K(xi,xj) with a kernel function. For the polynomial model we would use the
kernel K(xi,xj) = (1 + xi · xj)k. To obtain a procedure called kernel regression, our orig-
inal objective must be rewritten in terms of inner products min

∑m
i=1 (w · xi − yi)

2 . Of
course, we face the same problem in kernel regression as we do in SVMs. As we increase
the dimensionality of the data points we require more data.

2.2 Linear Splines

Linear splines o�er another example of how to reduce a problem to linear regression. Here,
we are trying to build a piece-wise linear function to �t the data (see Figure 2). For our
discussion, we assume the knots, k1 and k2 in the example in Figure 2, are known in advance.
We can imagine splitting the data points up into three groups using the given knots k1and
k2 and solve three separate regression problems, but this does not assure continuity.

If we want the curve to be continuous, we can reduce the problem to straight linear
regression by noticing that any linear spline can be a simple linear combination of basis
functions. In the example in Figure 3, given knots k1 and k2 we can build up a piece-wise
linear function step by step. We �rst start with a linear function

f̂(x) = a + bx

which we use to account for points before the �rst knot k1 (green line in Figure 3). Next,
we add second line, the blue line in Figure 3, that is zero up until the �rst knot k1

f̂(x) = a + bx + c(x− k1)+
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k1 k2

Figure 2: The aim of linear splines is to �t a piece-wise linear function such as the one
shown in red. We can imagine splitting the data points up into three groups using the
given knots k1and k2 and solve three separate regression problems. This, however, does not
assure continuity.

k2k1

Figure 3: Any linear spline can be a simple combination of linear basis functions. To �t
linear splines given the knots k1and k2 we map each point xi we map the data point to a
vector xi → 〈1, x, (x− k1)+, (x− k2)+〉 and solve the standard linear regression problem.
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where

(z)+ =
{

z if z ≥ 0
0 if z < 0

Last, we add a third line, the purple line in Figure 3, that is zero up until the second knot
k2

f̂(x) = a + bx + c(x− k1)+ + d(x− k2)+

The coe�cients in the function can be found by mapping each data point to a vector
x → 〈1, x, (x− k1)+, (x− k2)+〉 and solving the standard linear regression problem. This
approach can generalize to higher order splines. It can incorporate additional constraints
and generalize to higher dimensions.

3 Over�tting

3.1 Feature Selection

As we increase the dimensionality of our data, we run into the problem of over�tting. It
is at least as bad in regression as it is in classi�cation. The aim of feature selection is to
�nd a subset of features/dimensions/variables that are best in some sense for our data.
One can try to enumerate all 2n features but for a large number of features this can be
computationally expensive. Often one tries a greedy search method where features are
added one-by-one to improve the objective or features are removed one-by-one to improve
the objective.

3.2 Regularization

Another approach is to blame over�tting on weights that are too large. With large weight
vectors it is easier to over�t our data. The idea is to constrain weight vectors in some way.
Regularization refers to any time we add a penalty term that involves the weight vector.
Shrinkage refers to any technique where we are shrinking the weights in some way.

One example of a regularization technique is ridge regression. Here we optimize the
objective

min
w

m∑
i=1

(w · xi − yi)
2 + λ ‖w‖2

2

where the smoothing constant λ is chosen in advance. Larger values of λ tend to smooth
curves by penalizing larger weight values through the L2 norm of the weight vector ‖w‖.
Finding a weight vector w for ridge regression is not hard. We can �nd a closed for solution
in which we modify the pseudo-inverse

w =
(
X>X + λI

)−1
X>y

where I is an n by n identity matrix.
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