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Lecturer: David Blei & Rob Schapire Lecture #13
Scribe: Lindsey Poole March 29, 2007

1 EM Algorithm Review (Dave)

E-Step Compute the posterior distribution of the hidden variables given observations.

M-Step Maximize expected complete log likelihood with respect to model parameters.

1.1 Applications of the EM Algorithm

Language Processing Figure 1 shows a hidden Markov model with noisy observations.
The hidden data point determine the next. Instead of a distribution of a cluster, we
have a transition matrix between clusters. This is used in language processing. We
partition words based on how they are used in articles. EM will cluster words into
nouns, verbs, etc.

DNA Data We can also use EM to reconstruct an evolutionary tree and model how DNS
evolves over time from the root, as in Figure 2. We could, for instance, reconstruct
DNA sequences of dinosaurs.

Face Recognition We can use an EM Algorithm to learn what different parts of the face
look like. We divide an image into patches as in Figure 3. We don’t know which patch
belongs to which face.

Language Translation We could create a English to Spanish translator using an EM
Algorithm as in Figure 5

We want to create create a probability distribution, P (English → Spanish), of English
to Spanish names.

2 Regression (Rob)

Ok, we’re going to change topics now. Previously we’ve been working with classification
algorithms, which categorize objects into particular classes based on their attributes. For
instance, we can classify email messages as spam or not spam. However, sometimes you
wish to predict a real value quantity based on your observed data. For instance we may
wish to predict:

• How much will it rain tomorrow

• How much a stock will go up or down

• How many years a person has to live
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Figure 1: Hidden Markov Model

Figure 2: Evolutionary Tree

Figure 3: Face Recognition

Figure 4: Face Graphical Model
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Figure 5: Language Translation
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This problem of predicting real values is called regression. Usually our goal is to make
predictions that are as accurate as possible. One potential example is to make accurate
weather predictions. Occasionally, however, the goal is to uncover some underlying trend
or pattern, for instance, the overall trend of the price of a stock.
In order to do this, we are assuming that we have access to a set of {x, y} pairs, consisting
of an independent and a dependant variable, and we are also assuming that {x, y} are
independent and identically distributed random variables. The goal is to predict a y value
from x, however, we are not trying to predict y exactly; instead, we would like to make a
prediction that is as close as possible. So given x, we make a prediction f̂(x) that should
be close to y. Alternately, we might want f(x) to be close to

f(x) = E[y|x]
︸ ︷︷ ︸

unknown

So there are two potential goals we would like to fulfill when estimating f̂ :

1. we want |y − f̂(x)| to be small

2. we also want |f(x)− f̂(x)| to be small

f(x) is nearly impossible to estimate for most f , as obtaining observations is very difficult.
For instance, a person’s lifetime can only be measured once, if you are (un)lucky enough to
be present to record the events. So for all intents and purposes, |y− f̂(x)| can be measured,
|f(x)− f̂(x)| can not, because you can never measure f . Let’s change the previous formulae
to improve their math niceness:

1. Exy[(y − f̂(x))2]

2. Ex[(f(x)− f̂(x))2]

Theorem 1.

E[(y − f̂(x))2]
︸ ︷︷ ︸

1

= E[(f(x)− f̂(x))2]
︸ ︷︷ ︸

2

+ E[(y − f(x))2]
︸ ︷︷ ︸

3

(1)

If we minimize 1 we also minimize 2. 3 is intrinsic noise.

Proof.

Fix x

f = f(x) = E[y|x] = E[y]f̂ = f̂(x)

We compute both sides:

LHS = E[(Y − f̂)2]

= E[y2 − 2yf̂ + f̂2]

= E[y2]− 2f f̂ + f̂2.
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RHS = E[(f − f̂)2] + E[(y − f)2]

= f2 − 2f f̂ + f̂2 + E[y2 − 2fy + f2]

= f2 − 2f f̂ + f̂2 + E[y2]− 2f2 + f2.

We want to try to minimize 1

Given data (x1, y1), ..., (xm, ym), we can approximate Equation (1) by

1

m

m∑

i=1

(yi − f̂(xi))
2. (2)

Here, (yi− f̂(xi))
2 is the loss function, which is also known as the squared error or quadratic

loss. We want to minimize E[loss], which is the true loss, risk, or error. To do this, we
need to find an f̂ that minimizes the empirical loss, as it is an approximation of the true loss.

A different way of thinking about this problem is to assume

y = f(x)+ ε where

ε ∼ N(0, σ2)
gaussian←−−−−−

This is equivalent to

Y |X ∼ N(f(x), σ2).

Then the conditional likelihood of f̂ , given the xi’s is

m∏

i=1

[

1√
2πσ2

exp

(

−(yi − f̂(xi))
2

2σ2

)]

so the log likelihood is

− 1

2σ2

∑

i

(

yi = f̂(xi)
)2
−m ln(

√
2πσ)

Since σ is a constant, and we’re minimizing the summation, we see that minimizing Equation
(2) is actually equivalent to maximizing the likelihood under these probabilistic assumptions.

2.1 School District Example

We will now present an example. Our data set for this example consists of school district
spending in New Jersey. Figure 6 shows a chart of school district spending, with per dis-
trict enrollment represented on the x axis, and spending per district on the y axis. Upon
closer analysis we discovered that the special education school has much higher funding per
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student. The question is, how are we to account for this in our spending model? How can
we predict how much a school district will spend?

In the following formulae, i is the district number, yi the spending for district i, and xi is
(in this example anyway) the enrollment. Since y looks really linear, we’ll model y by a
linear function.

f̂(xi) = wxi

We’re trying to minimize

∑

i

(

yi − f̂(xi)
)2

=
∑

i

(yi − wxi)
2

d/dw = 2
∑

i

(xi(wxi − yi)) = 0

w =

[
∑

i

xiyi

]

/

[
∑

i

x2
i

]

.

So back to our plot, in Figure 7 we see that Newark, the largest school district, seems to
be shifting the line up.
What is the obvious way of estimating how much a school district spends on each student?
The most obvious way is total dollar amount spent, divided by the total number of pupils:

∑
yi

∑
xi

= $12098 per pupil.

This is what is shown by Figure 7.

We now modify our previous log likelihood formula to suit our example. We can assign a
different variance, σ2

i , to each example (xi, yi). Then the likelihood is

m∏

i=1




1

√

2πσ2
i

exp

(

−(yi − f̂(xi))
2

2σ2
i

)



and the log likelihood is

−1

2

∑

i

(

yi − f̂(xi)

σ2
i

)2

−
∑

i

ln(
√

2πσi)

We’re trying to minimize the first summation.
How should we choose the variances σ2

i ? The total spending for a district y is the sum of
the amounts spend on each pupil y(j), so

y = y(1) + ... + y(x).

if these random variables are independent, the variance of y is

var(y) = var(y(1)) + ... + var(y(x)).
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Therefore for our example σ2
i = cxi, so

∑

i

(

yi − f̂(xi)

cxi

)2

=
∑

i

(
yi − wxi

cxi

)2

d/dw =
2

c

∑

i

(wxi − yi) = 0

w =

∑

i xi
∑

i yi

Now we can apply this to our data to obtain a revised spending estimate, as shown in
Figure 8.
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Figure 6: School District Spending

Figure 7: School District Spending

Figure 8: School District Spending
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