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Homework #3 will be released soon. Some questions and answers given by comments: Com-
putational efficiency of K-means clustering? It will be exponentially increased. There is a pa-
per which shows that K-means takes 2Ω

√
n time in the worst case, where n is the number of data

points. (http://www.stanford.edu/∼darthur/kMeansLb.pdf) The relationship between K-means clus-
tering and CS research? For example, similarity search.

1 Introduction

Probability is used to model uncertainty about data, and its role in CS is increasing now. (ex:
randomized algorithm) Graphical models (or Baysien Network, in COS 402) are a marriage of
probability theory and graph theory. Today, we will cover an overview and concrete example of
Naive Bayes. This will be a building block for subsequent material.

1.1 Joint Probability Distribution

Let {X1, X2, . . . , XN} be a set of random variables, for example, flips of coins, Gaussian random
variables, DNA sequences, interactions between monkeys, and so on. These random variables are
governed by a joint distribution. (Assume we have access to it.) Then some questions we can ask
are:

marginal independence XA y XB: Are XA and XB independent?

conditional independence XA y XB | XC : Given XC , are XA and XB independent?

conditional probability P(XA | XC): Given XC , what is P(XA)?

where X is a random variable, x is a realization of random variable, and A, B,C are sets of indices.
All these can be answered by manipulating the joint distribution.

For example, we can compute P(XA, XB) using factorization:

P(XA, XB) = P(XA)P(XB)⇔ XA y XB

And how do we compute conditional probability P(XA | XC)? We can compute this using the joint
and marginal probability distributions:

P(XA | XC) = P(XA, XC)
P(XC)

Finally, how do we get P(XC)? We can use marginalization:

P(XC) =
∑

¬C

P(XC , X¬C)



1.2 Representation

Let’s say we have 10 coin tosses. We need a (really big) table of size 2N to represent the joint
distribution, and it will be a problem. Here, graphical models solve this by taking advantages of the
local relationships of conditional independence. Let’s look at how the graphical models can solve
this.

2 Discrete Graphical Model

Here we will cover a high-level overview of a graphical model. We will deal with discrete random
variables only. Graphical models are directed acyclic graphs (DAG). Nodes are (individual) random
variables and edges denote possible dependence. Thus, XΠi are the parents of Xi and Xi is dependent
on XΠi . Figure 1 shows an example of a graphical model with 3 random variables. In the example,
X3 is dependent on values of X1 and X2.

Figure 1: An example of a graphical model

Figure 2: An example of a graphical model with 6 random variables

Now let’s consider the graph with 6 random variables in Figure 2 and try to compute the joint
distribution P(X1, X2, . . . , X6). Without the graphical model, we can calculate this by definition
(chain rule):

P(X1, X2, . . . , X6) =
6
∏

i=1
P(Xi | X1, X2, . . . , Xi−1)

But with the graphical model, the computation can be much simpler. We just multiply the condi-
tional probabilities by exploiting the conditional independence relationships in the graphical model.

P(X1, X2, . . . , X6) = P(X1)P(X2 | X1)P(X3 | X1)P(X4 | X2)P(X5 | X3)P(X6 | X2, X5)
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On the right hand side, the term P(X1) is because P(X1) has no parent, and the term P(X2 | X1) is
because the parent of X2 is X1, and so on. In the graphical model, the joint distribution factorizes
like this.

2.1 Local Probability Tables

The joint distribution is defined in terms of local probability tables. For binary random variables,
the number of entries required is 2 for P(X1), and 4 for P(X2 | X1). In general,

P(Xi | Xπi) =



















4 if |πi| = 1
8 if |πi| = 2
2K+1 if |πi| = K

(Note that the joint distribution is not well defined in cycle. Also, in implementation, we can
reduce the size of the table by only storing the P(Head) and get P(Tail) by 1 − P(Head). But for
now, just be naive for illustration.)

So, how big is the full joint distribution with N = 6 in our example? It has 26 = 64 entries. But
with the graphical model, our representation has only 2 + 4 + 4 + 4 + 4 + 8 = 26 entries. So why is
the graphical model so important?

2.2 What the graphical model does (very important!)

2.2.1 We replaced exponential growth in N with exponential growth in |πh|.

This is a huge saving in terms of both space and computation because many applications require
a huge number of random variable, for example, sequence of DNAs, languages, or documents.
(Assuming we made or know the graph.)

Figure 3: GM represents a family of distributions

2.2.2 The graphical model represents a family of distributions.

We’ve been discussing this without saying concrete probabilities like 0.6 or 0.4. Instead, we define a
family and we can freely change local probabilities. So, the question is, are all the joint distributions
in this family? (Suppose the graph is fixed.) With this graphical model, can I get every distribution?
The answer is no. There are some joint distributions which is not in this family. Because not
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every joint distribution factorizes like this! (Remind the number of local probability table entries:
64vs.26) For example, in Figure 2, X5 can be dependent on X2, but it cannot be represented in the
graph. Thus, building a graphical model is imposing a factorization on joint distributions. Figure 3
depicts that a family is a subset of the whole possibilities. So, why do we need a family? There are
3 reasons.

1. We can do efficient inference. Complexity can be controlled by computing conditional and marginal
independence probabilities. Generally the joint probability is given by the chain rule,

P(X1, X2, . . . , X6) = P(X1)P(X2 | X1)P(X3 | X1, X2)P(X4 | X1, X2, X3)
= P(X5 | X1, . . . , X4)P(X6 | X1, . . . , X5)

But in our graphical model,

P(X1, X2, . . . , X6) = P(X1)P(X2 | X1)P(X3 | X1)P(X4 | X2)P(X3 | X1) = P(X3 | X1, X2)

since X3 is conditionally independent of X2 given X1 (X3 y X2 | X1) and this means if we
know X1, knowing X2 gives no additional information. Also,

P(X4 | X1, X2, X3) = P(X4 | X2)

since X4 is conditionally independent of X1 given X2 (X4 y X1 | X2) and X4 is conditionally
independent of X3 given X2. (X4 y X3 | X2) In the graphical model, when j is an ancestor of
i, then Xi y X j | Xπi holds.

2. We can answer questions efficiently with Bayes Ball algorithm. ”Bayes Ball” algorithm an-
swers all probability questions efficiently. We will cover this later in the semester.

3. Graphical models are great for model building. It is an essential tool for complicated inter-
acting data sets. We encode assumptions about data and reuse the structure model. Other than
the graphical model, there are other similar algorithms. Figure 4 shows the hidden Markov
model and Figure 5 depicts an example usage of Kalman Filter.

Figure 4: Hidden Markov Model Figure 5: The positions of a plane

In Kalman Filter (in EE), positions of a plane predict the next position. Surprisingly, these two
algorithms which are developed from totally different communities follow the same graphical
model.
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So, how to come up with the graphical model? It’s a dark art. To build new creative graph-
ical models, you should take a walk, and think. There is some research which tries to find the
independence assumptions automatically. This is the end of high-level overview of the graphical
model.

3 Gaussian i.i.d. Model

Let’s assume one-dimension random variables from the same Gaussian distribution. Figure 6 shows
the Gaussian i.i.d. model and Figure 7 represents plate notation.

Figure 6: Gaussian i.i.d. Model Figure 7: Plate Notation

4 Next Lecture

Next time we will cover Naive Bayes Classification of documents.
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