
COS 424: Interacting with Data

Lecturer: Robert Schapire Lecture #7
Scribe: Jia Deng Feb 27, 2007

1 Review of boosting

Last time we talked about boosting. The idea is to combine many weak learners to get a
more accurate prediction. We rely on the weak learning assumption that the weak learners
consistently predict better than random guessing.

Recall the three conditions for successful learning. First we need enough data. We have
no control over this in Adaboost. Second, we want low training error. Adaboost reduces
training error exponentially as the number of training rounds T increases. Finally we prefer
simple prediction rules. In Adaboost the complexity of the prediction rules increases with
T . However, Adaboosting still performs well with large T . The reason is that with more
training rounds Adaboost increases the margin, that is, the confidence in its prediction.
Therefore Adaboost tends not to overfit and T is not a critical parameter.

2 SVMs

Boosting was not designed to maximize margin but happens to do so. We do have methods
that explicitly maximize margin. One of them is Support Vector Machines, or SVM s.

Let’s go back to a geometric view as we did with the Nearest Neighbor algorithm. As-
sume all example points are real number vectors in Euclidean space. For discrete attributes,
we can convert them to real numbers, e.g. 1 as smoke and 0 as not smoke. The Nearest
Neighbor algorithm has trouble with high dimensional data. We will see how SVMs can get
around this.

Suppose we have data points as in Figure 1. Our goal is to find a prediction rule
that separates the positives and negatives. A natural choice would be to use a line, or a
hyperplane in high dimensional space. It is also called a linear threshold function (LTF) or
perceptron.

Figure 1: 3 candidate lines

Figure 2: Maximize margin

We have many candidate lines, for example, the three lines in Figure 1. Line(2) seems
to be more natural in that it separates all points as much as possible. Line(1) and line(3)
are not as good because if we jiggle them a little, they tend to make different predictions
for nearby points. In other words, line(1) and line(3) are not as confident when making
predictions.

The idea of SVMs algorithm is to maximize the distance to all points. We can imagine
that there is a band region with no points in it, as in Figure 2. We want to find a line that
maximizes the width of the band. We define the (one side) width of the band, δ, to be the
margin. Note that the margin defined here is different from that with boosting. Here the
margin is defined on the entire training set whereas in boosting it is on individual points.
We call the closest points (those with exact distance δ and circled in Figure 2) the support
vectors.

3 Complexity of SVMs’ predictions

Why is this a good idea? Let’s go back to the three conditions for successful learning. We
have no control over whether we have enough data. The training error is zero. (For now
let’s assume that the examples are always linearly separable.) What about the complexity
of the predictions? Since we have infinite number of hypotheses, we cannot use ln |H|.
Instead we use VC-Dimension. It turns out that the VC-Dimension of linear threshold
functions in Rn is n, i.e.

VC-dim(LTF’s in Rn) = n .

(Note that here and throughout this development, we are assuming the hyperplanes pass
through the origin.) This is undesirable because the amount of data we need would be
roughly proportional to n, which is true for general LTF’s. However, for LTF’s with margin
δ for points in a ball of radius R, we have

VC-dim(LTF’s with margin δ for points in ball of radius R) =
(

R

δ

)2

.

This is nice because the complexity is independent of the dimension n. Also VC-Dimension
decreases as the margin δ gets larger.

2

Figure 3: linear algebra review

4 Mini linear algebra review

Now we will have a tiny quick review of linear algebra. For simplicity, we are only considering
lines (hyperplanes) that go through the origin. Any hyperplane can be defined by its unit
normal vector v, that is,

hyperplane = {x | v · x = 0} .

For an arbitrary point x, the (signed) distance to the hyperplane is v · x. To summarize,

v · x =


= 0 if x is on the hyperplane
> 0 if x is above the hyperplane
< 0 if x is below the hyperplane

.

5 Computing the classifier

Now let’s look at how to compute the maximum margin hyperplane. Given (x1, y1), . . . , (xm, ym),
where xi ∈ Rn are data points and yi ∈ {−1,+1} are labels, we want to find a hyperplane
v maximizing the margin δ, that is,

Maximize δ

Subject to


v · xi ≥ δ if yi = +1
v · xi ≤ −δ if yi = −1
‖v‖ = 1

We can rewrite the constraints more compactly as{
yi(v · xi) ≥ δ, i = 1, . . . ,m
‖v‖ = 1

.

We introduce a new variable w:
w ,

v

δ
.

Substituting v with δw in the constraints we get{
yi(w · xi) ≥ 1, i = 1, . . . ,m
‖w‖ = 1

δ

.

3

Observe that maximizing δ is equivalent to minimizing ‖w‖, or 1
2‖w‖2, since ‖w‖ = 1

δ .
Therefore, we can eliminate the second constraint and reformulate the problem as

Minimize 1
2‖w‖2

Subject to yi(w · xi) ≥ 1, i = 1, . . . ,m

This is a convex programming problem. For reasons we will see later, we want to convert it
to its dual problem. Following a standard recipe, first we write down the lagrange function

L(w,α) =
1
2
‖w‖ −

∑
i

αi (yi (w · xi)− 1)

where αi is the lagrange multiplier. Then we take the partial derivatives of L with respect
to w. Solving equations

∂L

∂wj
= 0, j = 1, . . . , n

we get
w =

∑
i

αiyixi . (1)

Plugging w into L, we have

L̄(α) =
∑

i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj . (2)

By optimization theory, the dual problem is

Maximize L̄(α) =
∑

i αi − 1
2

∑
i,j αiαjyiyjxi · xj

Subject to αi ≥ 0, i = 1, . . . ,m

We can solve this dual problem and use the dual solution α∗ to obtain the primal solution
w∗ by equation(1). There are many efficient ways of solving the dual problem. Anyway,
since the objective function is convex, we can follow a path upward without worrying about
local maxima. How to solve this problem exactly is beyond the scope of this class.

Observe two properties of the dual problem. First, w is a linear combination of the data
points. Second, we only need to compute xi · xj for L̄, which is very important as we will
see pretty soon.

6 Dealing with linearly inseparable data

What do we do if the data are not linear separable? There are two answers.

6.1 Soft margin

One way is to allow the algorithm to move points. Suppose the data are almost linearly
separable, with only a few bad examples, as in Figure 4. We give the algorithm permission
to move bad points to the other side of the hyperplane. We change the optimization function
by adding a new term penalizing large distances. The optimization function becomes

Minimize
1
2
‖w‖2 + C · (distance points moved) .

4

Figure 4: Soft margin

where C is a constant determining how far we allow the points to be moved. This idea is
called soft margin. In the original proposal, the penalty term was raised to certain power.
However, then the problem becomes non-convex, thus more difficult to solve.

6.2 Kernel trick

But what if we have data points like Figure 5 ? It is impossible to separate them using
a line. The solution is to map the data into higher dimensional space, where they often
become linearly separable.

For example, below is a mapping from 2 dimension to 6 dimension.

F (x) = F ((x1, x2)) = (1, x1, x2, x1x2, x
2
1, x

2
2)

A point (2, 3), for example, is mapped to (1, 2, 3, 6, 4, 9). Under this mapping, a hyperplane
in 6-D space becomes

a + bx1 + cx2 + dx1x2 + ex2
1 + fx2

2 = 0

Figure 5: Kernel trick

5

which is a conic section (ellipse, parabola, etc.) in 2-D space. Therefore the data points in
Figure 5 can be separated by an ellipse under this mapping.

We can follow the idea of F and add more terms of higher degree to map the data into
even higher dimensions. However, if the original dimension is n and we add terms of all
degrees up to k , the new dimension is O(nk),i.e. exponentially increasing, which seems
a very bad situation. First, statistically we need much more data because of the curse of
dimensionality. Second, computationally it is much more expensive.

However, recall that

VC-dim(LTF’s with margin δ for points in ball of radius R) =
(

R

δ

)2

.

It follows that the complexity of the predictions is independent of n. Also note that when
mapped into higher dimensions, δ increases so the VC-Dimension actually decreases. In
fact, R also gets larger, but often δ gets larger faster. This resolves our first concern.

It also turns out that actually we can avoid explicit computation in high dimensions by
using the kernel trick. Recall that we only need to compute xi · xj for L̄. Now we modify
the mapping function F a little bit:

F (x) = F ((x1, x2)) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2) .

We then compute the inner product of point x and z in high dimensional space, that is,

F (x) · F (z) = 1 + 2x1z1 + 2x2z2 + 2x1x2z1z2 + x2
1z

2
1 + x2

2z
2
2

= (1 + x1z1 + x2z2)2

= (1 + x · z)2 .

Note that we don’t even have to map! We call F (x) · F (z) the kernel function. Generally,
if we map the points using up to degree k, the kernel function is

K(x,z) = (1 + x · z)k .

There are of course lots of other kernels, for example

K(x,z) = exp(−c‖x− z‖2) .

Kernels measure similarity between points. Figuring out what are good kernels for a par-
ticular application is a big industry.

So far we can get around the computational burden in training. What about testing?
We replace xi in equation(1) by F (xi), that is,

w =
∑

i

αiyiF (xi) .

When evaluating a test point z, we compute

w · F (z) =
∑

i

αiyiF (xi) · F (z)

=
∑

i

αiyiK(xi,z) .

Next time we will talk about clustering and probabilistic methods.

6

