
COS 424: Interacting with Data

Lecturer: Robert Schapire Lecture # 5
Scribe: Megan Lee February 20, 2007

1 Decision Trees

During the last class, we talked about growing decision trees from a dataset. In doing this,
there are two conflicting goals:

• achieving a low training error

• building a tree that is not too large

We discussed a greedy, heuristic algorithm that would try to achieve both of these conflicting
goals.

2 Classification Error

Suppose that we cut off the growing process at various points over the growing processs,
and we evaluate the error of the tree at that point and time. This would lead to a graph
of size vs. error (where error is the probability of making a mistake). There are two error
rates to be considered:

• training error (i.e. fraction of mistakes made on the training set)

• testing error (i.e. fraction of mistakes made on the testing set)

The error curves are as follows:

tree size vs. training error

tree size vs. testing error

As the tree size increases, training error decreases. However, as the tree size increases,
testing error decreases at first since we expect the test data to be similar to the training
data, but at a certain point, the training algorithm starts training to the noise in the data,
becoming less accurate on the testing data. At this point we are no longer fitting the data
and instead fitting the noise in the data. Therefore, the shape of the testing error curve
will start to increase at a certain point at which the tree is too big and too complex to
perform well on testing data (an application of Occam’s razor). This is called overfitting to
the data, in which the tree is fitted to spurious data. As the tree grows in size, it will fit
the training data perfectly and not be of practical use for other data such as the testing set.
We want to choose a tree at the minimum of the curve, but we are not aware of the test
curve during training. We build the tree only using the training error curve, which appears
to be decreasing with tree size. Again, we have two conflicting goals. There is a tradeoff
between training error and tree size.

3 Tree Size

There are two general methods of controlling the size of the tree:

• grow the tree more carefully and try to end the growing process at an appropriate
point early on

• grow the biggest tree possible (one that completely fits the data), then prune it to be
smaller (this is the more common method)

One common technique is to separate the training set into two parts, the growing set and
the pruning set. The tree is grown using only the growing set, and the pruning set is used to
estimate the testing error of all possible subtrees that can be built, and the subtree with the
lowest error on the pruning set is chosen as the decision tree. In this method, we are using
the pruning set as a proxy for the testing set with the hope of achieving a curve similar
to the test curve when using the pruning set. For an example, 2/3 of the training set may
be used for growing, while 1/3 is used for pruning. A disadvantage of this method is that
training data is wasted, a serious problem if the dataset is small. Another approach is to
try to explicitly optimize a tradeoff between the number of errors and the size of the tree.
Consider the value

#training errors + constant× size of tree

Now there is only one value that must be minimized to determine the optimal tree. This
value attempts to capture the two conflicting interests simultaneously.

4 Assumptions in creating decision trees

As with any algorithm, there are various assumptions that are made when building decision
trees. Three of these assumptions are that:

• The data can be described by features, such as the features of Batman characters.
Sometimes we assume these features are discrete, but we can also use decision trees
when the features are continuous. Binary decisions are made on the basis of continuous
features by determining a threshold that divides the range of values into intervals
correlated with decisions.

2

• The class label can be predicted using a logical set of decisions that can be summarized
by the decision tree.

• The greedy procedure will be effective on the data that we are given, where effective-
ness is achieved by finding a small tree with low error.

5 Decision tree history

Decision trees have been widely used since the 1980s. CART was an algorithm widely
used in the statistical community, and ID3 and its successor, C4.5, were dominant in the
machine learning community. These algorithms are fast procedures, fairly easy to program,
and interpretable (i.e. understandable). A drawback of decision trees is that they are
generally not as accurate as other machine learning methods. We will be looking at some
of these state of the art algorithms later in the course.

It is difficult to explain why decision trees are not optimally accurate. Decision trees may
fail if the data is probabilistic or if the data is noisy. Features in the tree are not weighted
and simplicity is hard to control, with overfitting a constant problem while growing the
tree.

6 Theory: a mathematical model for the learning problem

Until now, we’ve taken a very intuitive approach. Although we know that we need data,
low error, and a simple rule, there are still many unresolved questions. For an example,
what does it mean for a rule to be simple? Why is simplicity so important? How much data
is enough? What can we guarantee about accuracy? And how can we explain overfitting?
We want to formalize the learning problem and define a measure of complexity.

6.1 Data

Training and testing examples should be similar. For an example, if we were classifying
images of handwritten digits by the digits they represent, we would want training examples
of the digits 0-9, not, for example, only 0-5. In the latter case, the algorithm would fail
miserably. Generally, the testing and training examples can be similar if they are produced
by the same process.

The following is a formalization of this idea of the testing and training examples being
generated by the same process. Assume that the data is random, and the testing and
training examples are generated by the same source, a distribution D. From this distribution
D, we get an example, x. The distribution is unknown, but all examples are IID since they
originate from the same distribution. There is also a target function, c(x), that indicates
the true label of each example. During training, the learning algorithm is given a set of
examples, x1, . . . , xn, each from the distribution D, and each example is labeled with its
correct label, c(x1), . . . , c(xn). This data is fed to the learning algorithm, which outputs
the prediction rule (i.e. hypothesis), which can take in a new example, x, and output a
prediction h(x). We measure the goodness of the classifier by determining the generalization
error, which is the probability that a new example x, chosen at random with respect to the
distribution D, will be misclassified. This is equivalent to the expected test error, which
can also be denoted as err(h). Our goal is to minimize the generalization error.

3

generalization error = Prx∈D[h(x) 6= c(x)]
= E[test error]
= err(h)

6.2 Complexity

Complexity here is an informal term defined as the opposite, or lack of, simplicity. Consider
the two trees, hA, which consists of five nodes, and hB, which consists of one node. Obvi-
ously, hA is more complex. But why is this so? One way of thinking about the complexities
of these trees is to consider the length of the programs needed to compute the trees. That
is, how many bits or ascii characters would we need to write the tree down? The program
for hA would be far longer than the program for hB, which would be one line. But this is
a slippery idea. Suppose that in the next edition of Java, there was a library function that
exactly computed tree hA. Now, hA only requires one line of code, and our definition of
complexity is invalid. Although description length as complexity is an intuitive idea, it is a
rather slippery measure. That is, complexity should not be measured for a single rule.

Instead, it is actually a class of rules that is simple or complex. In this case, hA belongs
to a class of hypotheses, H5, which is the set of all trees with five nodes. The real reason
why hA is more complex than hB is because hA belongs to class H5, which is more complex,
or richer, than class H1, which is the set of trees with one node. Now, why is H5 richer than
H1? H5 must be bigger because it contains all trees in H1. H5 is the set of all possible trees
that have five nodes. For now, we are assuming that trees in the same class have the same
complexity. This prevents us from thinking about the complexity of individual trees rather
than the complexity of a set of trees. Our claim is that we need more data to learn with
the same accuracy in a large hypothesis space than in a small hypothesis space. Essentially,
the size of the hypothesis space is important.

|H5| > |H1|

To illustrate this point, imagine this class experiment. There are training objects 1-
10 and testing objects 11-20. Each person in the class represents a hypothesis, and each
person writes down his/her hypothesis (0 or 1) for each object in the training set. When the
true labels of the training set are revealed, each person calculates his error. During class,
the most accurate hypothesis was 80%. The two people who achieved 80% accuracy then
checked their accuracy on the testing set, on which they were 30-40% accurate. However,
everybody’s true generalization error is 50%, since the target values were generated by
randomly flipping a coin. Regardless, since there are many people and many hypotheses,
there is a chance that a few people will have high accuracy during training. When there is
a large set of hypotheses, there is a good chance that one of them might seem to do well
on the training set, although it may still perform poorly on a testing set. In this way, the
testing accuracy somehow depends on the size of the hypothesis space. (The hypothesis
space exists before any data is seen. Once we learn the data, the best hypothesis in this
space is determined.)

6.3 Theorem

Let lg|H| be a measure of the complexity (i.e. size) of the hypothesis space in terms of
the number of bits required to describe any hypothesis in the space. This complexity is

4

proportional to the size of the tree.

complexity = lg |H| = O(n)

where n is the number of nodes in the tree.

Theorem 1 Say that algorithm A finds a hypothesis hA ∈ H. This hypothesis is consistent
(no mistakes on training set) with all m training examples. That is, assume that the training
error is zero. Then,

err(hA) ≤
ln|H|+ ln1

δ

m

with probability greater than 1−δ (i.e., with high probability).

δ, a small constant, is included because the algorithm cannot be perfect. Whenever
we are using random data, there is the possibility of getting a weird dataset. For an exam-
ple, the algorithm would perform badly if the number 7 never appeared in a set of zip codes.
In this way, there is always a small chance that an algorithm will perform very poorly.

This relation says that as the amount of data, m, increases, the error decreases. Also,
as the complexity increases, the error increases as well. The proof follows.

Proof.

hA ∈ H

We want to show that

err(hA) ≤
ln|H|+ ln1

δ

m

Let

ε =
ln|H|+ ln1

δ

m

The hypothesis h is ε-bad if err(h) > ε. Show that hA is not ε-bad with probability
≥ 1−δ. That is,

Pr[hA is not ε-bad] ≥ 1− δ

So prove:

Pr[hA is ε-bad] ≤ δ

We are proving a bound on the probability. hA is consistent with the data, so

Pr[hA is ε-bad] = Pr[hA is consistent and ε-bad]

5

If the condition of this probability holds, then there is some hypothesis that is consistent
and ε-bad. Thus,

Pr[hA is consistent and ε-bad] ≤ Pr[∃h ∈ H : h is consistent and ε-bad] (1)

Let

B = {h ∈ H : h is ε-bad}
= {h1, . . . , hk}

Then (1) is equal to

Pr[∃h ∈ B : h is consistent]
= Pr[h1 is consistent ∨ . . . ∨ hk is consistent]

This is the probability that any h is bad.
Use the union bound,

Pr[a ∨ b] ≤ Pr[a] + Pr[b]

so

Pr[h1 is consistent ∨ . . . ∨ hk is consistent] ≤ Pr[h1 is consistent] + . . . + Pr[hk is consistent]

Now compute the probability that any h ∈ B is consistent with the training set.

Pr[h is consistent] = Pr[h(x1) = c(x1) ∧ . . . ∧ h(xm) = c(xm)]

This becomes a product because the examples are IID.

= Pr[h(x1) = c(x1)]× . . .× Pr[h(xm) = c(xm)]

For each x,

Pr[h(x) = c(x)] = 1− err(h) ≤ 1− ε

Pr[h is consistent] ≤ (1− ε)m

Pr[hA is consistent and ε-bad] ≤ Pr[h1 is consistent] + . . . + Pr[hk is consistent]
≤ |B|(1− ε)m

≤ |H|(1− ε)m

≤ |H|e−εm

= δ

since

1 + x ≤ ex∀x

and since the definition of ε is

ε =
ln|H|+ ln1

δ

m

We have shown that Pr[hA is ε-bad] ≤ δ

6

