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The previous lecture defined the Nearest Neighbor Algorithm and discussed how it suf-
fers from the curse of dimensionality. This means that as the number of dimensions increase
the Nearest Neighbor algorithm performs poorer and poorer. To better understand the curse
of dimensionality with regard to the Nearest Neighbor algorithm one must understand what
higher dimensions look like. The following discussion demonstrates how higher dimensions
(n >> 3) are qualitatively different from lower dimensions (2 or 3).

1 Higher Dimensions

1.1 Hypersphere Volume

Imagine a hypersphere in n dimensions of unit radius. Let’s call it S,,. Now imagine the
smallest hypercube that contains the sphere with in its volume. Call this cube C,, (the side
of this cube would be 2 (why?)). Now imagine a smaller cube ¢, at the center of S,, whose
side length is 1. The smaller cube is placed such that the centers of S,, C),, and ¢, are
co-incident and the edges of the cubes are parallel. Figure 1 shows the setting for n = 2
and Figure 2 shows it for n = 3. Now let us look at the volume of this hyper sphere.
For n = 2,3 we see that the smaller cube is contained entirely in the sphere. Intuitively
we would expect this to be true with higher dimensions. Table 1 outlines the volumes of
Sn, Cn and ¢, for some values of n. The results suggest that as n increases the volume of
Sp, moves closer to zero and in the limit reaches zero. (Observation: distance of a corner

1
point of ¢, from the center is En§ = \/Z , which is greater than one (outside the hyper
sphere) for n > 4).
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Figure 1: In 2 Dimensions Figure 2: In 3 Dimensions

1.2 Shell Volume

Imagine a hypershell (H,) of unit outer radius with a shell of thickness e. Figure 3 depicts
such a shell in 2 dimensions. Volume of a hypersphere in n dimensions is ky, - " (why?),
where k,, is some constant for n dimensions and r is the radius of the hypersphere. Hence,



n | Volume of ¢, | Volume of S, | Volume of C,
2 1 T ~ 3.14 4
3 1 A /3 ~ 4.12 8
4 1 4.93 16
5 1 5.26 32
6 1 5.16 64
7 1 4.72 128
8 1 4.06 256
00 1 0 00

Table 1: Hypersphere Volume
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Figure 3: Hypershell in 2 Dimensions

1.3 Conclusion

The results in the previous sections mean that in higher dimensions, the points are “as far
as they can be” even in the average case (why?)! This means that the estimate that Nearest
Neighbor makes in higher dimensions can be wrong, in the sense that our intuition of a test
point being similar to a nearest training point breaks down due to the distances being huge.

As we know the three requirements of a good classifier are Enough Data, Low Training
Error and Simplicity, we can say that Nearest Neighbor has no control over the first one.
The second one can be true in cases of smaller dimensions (infact training error = 0 for
n = 2, 3).

Nearest Neighbor can be quite complex! As was demonstrated in the class, it can have



a very complex separation between what it would label as positive and negative (the area
distribution of a certain Nearest Neighbor classifier was shown in class to demonstrate this).

2 Decision Tree

2.1 An interesting example

This section introduces a new kind of classifier. A decision tree is a tree where each node is
used to make a decision and each edge is used to pursue further path based on the previously
made decision. The process stops when a node is reached which is a label. Let us consider
the following example. Table 2 shows the training data needed for a classifier and Table 3
shows the test data for the classifier. The apparel of a person such as tie, cape, mask, etc.
are called the features/attributes of the data (people in this case). Figure 4 shows a decision
tree based on this training data. The node marked tie makes a decision whether the person
wears a tie or not. Based on this decision, the person is further sent on to the left or right
edge of the tree.

Thus, it is clear to see that Batgirl is labeled as good while Riddler is labeled as bad

sex | smokes | tie | mask | cape | ears | class

Batman male no | no yes yes | yes | good
Robin male no | no yes yes | yes | good
Alfred male no | yes no no no | good
Penguin male yes | yes no no no | bad
Catwoman | female no | no yes no | yes | bad
Joker male no | no no no no | bad

Table 2: Training Data

sex | smokes | tie | mask | cape | ears | class
Batgirl | female no | no yes yes | yes 777
Riddler male no | no yes no no | 777

Table 3: Test Data
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Figure 4: Decision Tree



Batman + Alfred + Alfred + Batman +
Robin + Penguin - Penguin - Robin +
Catwoman - 1(1/2) Catwoman - 1(1)
Joker — Joker —

1(1/2) 1(1/4)

Figure 5: Choice of Feature for Root

by this decision tree. (Not a bad classifier, but everybody in the class would be labeled bad
by this tree (no tie, no cape)). Nevertheless, how did we build this tree?

2.2 Building a Decision Tree

It is clear to see that it is always possible to build a decision tree which will fit the entire
training data (why?). Hence, the objective must be to build the smallest possible decision
tree which classifies the entire training data correctly. The following discussion describes
a recursive procedure to find a decision tree. Although this technique does not explicitly
concentrate on finding the smallest decision tree which satisfies training data, it does find a
decision tree which would satisfy the entire training data. A very high level definition of the
algorithm is that, we need to figure out what to place at a particular node and recursively
call the similar procedure to find the children of the node.

Let us first figure out what to put at the root. There are six possibilities in all. Figure 5
shows how choosing tie as the root node would split the data and also shows how choosing
cape as the root would split the data. Now we need to decide which is a better choice. By
“better” choice we mean the one which splits the data to a “better” extent. It is easy to
see that choosing tie would split the data so that the number of bad labels on each side is
equal to the number of good labels on that side. On the contrary, choosing cape would split
it better in the sense that the right hand side has all good people and the left side has only
one good person. This intuition can be formalized in the following manner.

Define an impurity function to gauge a split of the data. The best feature to choose is
the one that leads to lesser impurity. In this case we can define the impurity function I as
a function of the fraction of good people in a group or block of examples. Hence, we need
the impurity to be low when the proportion of good people in a split is low or high and
we need it to be the highest when the proportions of good and bad people are comparable.
Figure 5 shows the impurities that have to be calculated for each of the choice. Figure 6
shows one such function, where r is the fraction of good people. The following functions
are widely used ones to get such impurity functions.

Entropy: I(r) = —r-log(r) — (1—r)-log(l — r)
Gini Index: I(r) = r-(1 — r)

Now we need to estimate the total impurity of a choice based on the impurities of the
left side and the right side. One simple way is to take their sum, but this would bias the
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Figure 6: Typical Impurity Function

side with the lower number of entries. Hence, a weighted average is the sensible choice.
Algorithm 1 defines a very high level pseudo code for the algorithm.

Algorithm 1 Recursive Decision Tree
for every attribute do
consider split with respect to this attribute
compute impurity

I[— P+ ‘I< P1 >+ P2 + M2 ‘I( D2 >
pP1 + n1 + p2 + ng P11+ m pP1 + n1 + p2 + ng D2 + N2
/*where p1, ni1, pa, ne are the splits of positives and negatives on the left and the

right sides™/
end for
choose state with minimum impurity
recursively build the subtrees




