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1 Introduction

Classifying objects from a data set based on a certain characteristic is a problem that comes
up in many contexts. Our focus in this lecture is on binary classification, i.e. given an input,
the classification scheme labels the input either positive or negative. In general, there might
be more than two classes; we focus just on the two-class case for simplicity.

A classification learning algorithm takes as input a data set. Each member of the data
set is classified as either positive or negative. The algorithm outputs another program,
called the classifier or hypothesis, that has the ability to predict the label of input examples
that are unclassified. The reasons that it is more desirable to produce a classifier program
in this way than to write a program directly are that classifier programs produced in this
way are more general purpose and therefore cheaper in terms of time and effort in the long
term, and that an automated learning algorithm has a greater capacity than humans to
express the differences in data objects in quantitative terms. For example, a human may
know the difference between a lowercase and an uppercase letter, but is not able to express
it in quantitative terms. On the other hand, a learning algorithm running on a computer
might be able to learn the difference from examples. Figure 1 shows the general idea of a
classification learning algorithm.
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Figure 1: Flow diagram for a classification learning algorithm



Example 1

Integer label

train

228 −
67 +

138 +
209 −
156 +
46 −

197 −
6 −

173 +

test

111
23
55

Table 1: A simple training data set example

The above table shows an input data set to a classification learning program and asks
the classifier program to predict the labels for 111, 23 and 55. Based on the input values
and the labels, the program might come up with the classification criterion that any integer
greater than 196 or less than 47 will be labeled negative, and positive otherwise; or that
any integer greater than 173 or less than 67 will be labeled negative, and positive otherwise.
Below is another example.

Example 2

Integer label

train

197 +
128 −
30 −
72 −

133 −
109 +
213 +
84 +
3 −

test

200
68

Table 2: A simple training data set example

It is not obvious how to find a simple classification rule for this dataset. However, if we
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change the representation of the numbers by writing them in binary, the problem becomes
simpler:

Example 3

Decimal Binary label

train

197 1 1 0 0 0 1 0 1 +
128 1 0 0 0 0 0 0 0 −
30 0 0 0 1 1 1 1 0 −
72 0 1 0 0 1 0 0 0 −

133 1 0 0 0 0 1 0 1 −
109 0 1 1 0 1 1 0 1 +
213 1 1 0 1 0 1 0 1 +
84 0 1 0 1 0 1 0 0 +
3 0 0 0 0 0 0 1 1 −

test

200 1 1 0 0 1 0 0 0
68 0 1 0 0 0 1 0 0

Table 3: A simple training data set example

One possible classification scheme for this example is: a training example, which is
a decimal integer, is positive if the second and sixth most significant bits in its binary
representation are set; it’s negative otherwise.

In general, for a classification learning algorithm to have a higher rate of success, the
data set should be large enough, the classification rule should be as consistent to the train-
ing examples as possible (i.e. the training error should be as low as possible), and the
classification/prediction rule should be as simple as possible (Occam’s razor). The last two
principles are often in confict with one another, so choosing the right balance between them
is critical to the performance of the learning algorithm.

2 The Nearest Neighbor Algorithm

The Nearest neighbor algorithm in n dimensions is an example of a learning algorithm.
Training. There are m training examples. Each training example is of the form (xi, yi),
where xi ∈ Rn and yi ∈ {−,+}. Store all the training examples.
Testing. Given a test point x, predict yi where xi is the closest training example to x.

3 The k-Nearest Neighbor Algorithm

Training. This is identical to the Nearest Neighbor Algorithm.
Testing. Given a test point x, predict yi where yi is the majority vote of {y1, y2, . . . yk}
and where {x1, x2, . . . xk} are the k closest training points to x.

The performance of the nearest neighbor and the k-Nearest Neighbor algorithms depend
upon the assumptions that we have a clear definition of distance between two points; that
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all the data is contained in Rn; the training set of examples provide an adequate coverage
of the n-dimensional space; and that nearby points are likely to have the same label.

As m, i.e. the number of training examples, approaches infinity, the nearest neighbor
algorithm is guaranteed to yield an error rate no worse than twice the Bayes error rate
(the minimum achievable error rate given the distribution of the data). k-nearest neighbor
is guaranteed to approach the Bayes error rate, for some value of k (where k increases as
a function of the number of data points). However, these convergence results are of little
value in practice since m is finite. This is why it is not rare to come across large error rates
for the the NN and the k-NN algorithms in practice.

4 The curse of dimensionality

As the number of dimensions in the feature space grows, the error rate of some learning
algorithms, including NN and k-NN, can be quite poor. This problem is called the “curse
of dimensionality.” It arises because the number of training examples are too few to cover
the feature space adequately. To see this, consider the classification of points on an n-
dimensional Boolean space. The training data consists of m bit vectors, each of length n.
Let m = 1000 and n = 20. If the first bit of the vector is 1, then the vector is labeled positive;
negative otherwise. There are a total of 220 ≈ 106 possible values on the 20-dimensional
boolean cube, and only 1000 have been covered by the training data (assuming each of the
m bit vectors is different). This makes it extremely unlikely for a random n-dimensional
test bit vector to fall in the vicinity of a training example, making the nearest neighbor and
the k-nearest neighbor algorithms extremely error-prone.
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