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A key challenge for cognitive neuroscience is
determining how mental representations map onto
patterns of neural activity. Recently, researchers have
started to address this question by applying
sophisticated pattern-classification algorithms to
distributed (multi-voxel) patterns of functional MRI data,
with the goal of decoding the information that is
represented in the subject’s brain at a particular point
in time. This multi-voxel pattern analysis (MVPA)
approach has led to several impressive feats of mind
reading. More importantly, MVPA methods constitute a
useful new tool for advancing our understanding
of neural information processing. We review how
researchers are using MVPA methods to characterize
neural coding and information processing in domains
ranging from visual perception to memory search.

Introduction
The most fundamental questions in cognitive neuroscience
deal with the issue of representation: what information is
represented in different brain structures; how is that
information represented; and how is that information
transformed at different stages of processing? Functional
MRI (fMRI) constitutes a powerful tool for addressing
these questions: While a subject performs a cognitive task,
we can obtain estimates of local blood flow (a proxy for local
neural processing) from tens of thousands of distinct neu-
roanatomical locations, within a matter of seconds. How-
ever, the large size of these datasets (up to several
gigabytes) and the high levels of noise inherent in fMRI
data pose a challenge to researchers interested in mining
these datasets for information about cognitive processes.

Traditionally, fMRI analysis methods have focused on
characterizing the relationship between cognitive vari-
ables and individual brain voxels (volumetric pixels). This
approach has been tremendously productive. However,
there are limits on what can be learned about cognitive
states by examining voxels in isolation. The goal of this
article is to describe a different approach to fMRI analysis,
where — instead of focusing on individual voxels —
researchers use powerful pattern-classification algo-
rithms, applied to multi-voxel patterns of activity, to
decode the information that is represented in that pattern
of activity. We call this approach multi-voxel pattern ana-
lysis (MVPA).
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The idea of applying multivariate methods to fMRI data
(i.e. analyzing more than one voxel at once) is not new. For
example, several researchers have used multivariate
methods to characterize functional relationships between
brain regions (e.g. [1–5]). A major development in the last
few years is the realization that fMRI data analysis can be
construed, at a high level, as a pattern-classification pro-
blem (i.e. how we can recognize a pattern of brain activity
as being associated with one cognitive state versus
another). As such, all of the techniques that have been
developed for pattern classification and data mining in
other domains (e.g. handwriting recognition) can be pro-
ductively applied to fMRI data analysis. This realization
has led to a dramatic increase in the number of researchers
using pattern-classification techniques to analyze fMRI
data. This trend in the fMRI literature is part of a broader
trend towards the application of pattern-classification
methods in neuroscience (for applications to EEG data,
see [6–11]; for applications to neural recording data from
animal studies, see [12–14]).

The first part of the article provides an overview of the
main benefits of the MVPA approach, as well as a listing of
some of the feats of ‘mind reading’ that have been accom-
plished with MVPA. The next part provides a more
detailed overview of the methods that make this mind
reading possible. The third part of the article discusses
some case studies in how researchers can go beyond mind
reading (for its own sake), and use MVPA to address
meaningful questions about how information is repre-
sented and processed in the brain.

The benefits of MVPA
More sensitive detection of cognitive states

Given the goal of detecting the presence of a particular
mental representation in the brain, the primary advantage
of MVPA methods over individual-voxel-based methods is
increased sensitivity. Conventional fMRI analysis meth-
ods try to find voxels that show a statistically significant
response to the experimental conditions. To increase sen-
sitivity to a particular condition, these methods spatially
average across voxels that respond significantly to that
condition. Although this approach reduces noise, it also
reduces signal in two important ways: First, voxels with
weaker (i.e. non-significant) responses to a particular con-
dition might carry some information about the presence/
absence of that condition. Second, spatial averaging blurs
out fine-grained spatial patterns that might discriminate
between experimental conditions [15].
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Like conventional methods, the MVPA approach also
seeks to boost sensitivity by looking at the contributions of
multiple voxels. However, to avoid the signal-loss issues
mentioned above, MVPA does not routinely involve spatial
averaging of voxel responses. Instead, the MVPA approach
uses pattern-classification techniques to extract the signal
that is present in the pattern of response across multiple
voxels, even if (considered individually) the voxels might
not be significantly responsive to any of the conditions of
interest. The multi-voxel pattern of response can be
thought of as a combinatorial code with a very large
capacity (not yet precisely quantified) for representing
distinctions between cognitive states. Because MVPA ana-
lyses focus on high-spatial-frequency (and often idiosyn-
cratic) patterns of response, MVPA analyses are typically
conducted within individual subjects.

A study by Haxby et al. [16] illustrates how multi-voxel
patterns of activity can be used to distinguish between
cognitive states. Subjects viewed faces, houses, and a
variety of object categories (e.g. chairs, shoes, bottles).
The data were split in half, and the multi-voxel pattern
of response to each category in ventral temporal (VT)
cortex was characterized separately for each half. By cor-
relating the first-half patterns with the second-half pat-
terns (within a particular subject), Haxby et al.were able to
show that each category was associated with a reliable,
distinct pattern of activity in VT cortex (e.g. the first-half
‘shoe’ pattern matched the second-half ‘shoe’ pattern more
than it matched the patterns associated with other cate-
gories); see [17–22] for similar results, and Section 3 for
additional discussion of this work.

In addition to decoding the category of a viewed object,
MVPA methods have been to used to decode (among other
things) the orientation of a striped pattern being viewed by
the subject [23,24]; the direction of movement of a viewed
field of dots [25]; whether the subject is looking at a picture
or a sentence; whether the subject is reading an ambig-
uous versus a nonambiguous sentence; and the semantic
category of a viewed word (the last three examples are
from [26]). All of those studies deal with decoding the
properties of a perceived stimulus. Other MVPA studies
have focused on decoding properties of the subject’s cog-
nitive state that cannot be inferred from simple inspection
of the stimulus, for example: whether the subject is lying
about the identity of a playing card [27]; which of two rival
stimuli is being perceived at a particular moment in a
binocular rivalry paradigm [28]; which of two overlapping
striped patterns [23] or moving dot patterns [25] the
subject is attending to during a particular trial; and
which of three categories the subject is thinking about
during a memory retrieval task [29]. Throughout this
article, we will be using the term ‘mind reading’ inclu-
sively, to refer to all of the types of decoding mentioned
above (note also that somemind-reading studies have used
conventional fMRI analysis methods instead of MVPA; see
for example [30]).

Relating brain activity to behavior on a trial-by-trial basis

The increased sensitivity afforded by MVPA methods
makes it feasible to measure the presence/absence of cog-
nitive states based on only a few seconds’ worth of brain
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activity. If the cognitive states in question are sufficiently
distinct from one another, discrimination can be well above
chance based on single brain scans (acquired over a period
of �2–4 s) [19,22,24,26,28,29,31–34]. This increase in tem-
poral resolution makes it possible to create a temporal
trace of the waxing and waning of a particular cognitive
state over the course of the experiment, which (in turn) can
be related to subjects’ ongoing behavior. The ability to
correlate classifier estimates with behavioral measures
across trials (within individual subjects, over the course
of a single experiment) is one of the most important
benefits of the MVPA approach. Although the temporal
resolution of MVPA is intrinsically limited by temporal
dispersion in the hemodynamic response measured by
fMRI, extant studies have used MVPA to successfully
resolve cognitive changes that occur on the order of sec-
onds. For example, MVPA has been used to predict the
time course of recall behavior in a free-recall task [29], and
it has also been used to predict second-by-second changes
in perceived stimulus dominance during a binocular riv-
alry task [28].

Characterizing the structure of the neural code

In addition to allowing us to sensitively detect and track
cognitive states, MVPA methods can be used to character-
ize how these cognitive states are represented in the brain.
The MVPA approach assumes that cognitive states consist
of multiple aspects (‘dimensions’), and that different values
along a particular dimension are represented by different
patterns of neural firing. This implies that we canmeasure
how strongly cognitive dimension x is represented in brain
region y, by measuring how much the pattern of neural
activity in region y changes, as a function of changes along
dimension x. Here, we are using ‘region y represents
dimension x’ to mean ‘region y carries information about
dimension x’; as with all other neuroimaging results, this is
no guarantee that region y plays a causal role in enacting
behavior based on dimension x.

One concrete way to test hypotheses about whether
region y represents cognitive dimension x is to measure
how well a pattern classifier, applied to voxels in region y,
can discriminate between cognitive states that vary along
dimension x (but see Section 2 for important caveats about
how to interpret good classifier performance). A more
powerful extension of this approach is to vary similarity
in a graded fashion along dimension x and see if classifier
performance decreases in a graded fashion as similarity
increases; examples of this approach are discussed in
Section 3 [22,23]. An alternative approach to studying
neural coding is to compare the brain patterns without
passing them through a classifier; for example, [35] used
multidimensional scaling (applied to raw brain data) to
show that multi-voxel patterns in lateral occipital cortex
tend to cluster by object category. Finally, it is worth noting
that MVPA is not the only way to measure the similarity of
neural representations with fMRI (see, e.g. the fMRI-adap-
tation approach described by [36]).

MVPA methods
The basic MVPA method is a straightforward application
of pattern classification techniques, where the patterns to
nalysis of fMRI data, TRENDS in Cognitive Sciences (2006), doi:10.1016/j.tics.2006.07.005.
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be classified are (typically) vectors of voxel activity values.
Figure 1 illustrates the four basic steps in an MVPA
analysis. The first step, feature selection, involves deciding
which voxels will be included in the classification analysis
(Figure 1a); Box 1 describes feature selection in more
detail. The second step, pattern assembly, involves sorting
the data into discrete ‘brain patterns’ corresponding to the
pattern of activity across the selected voxels at a particular
time in the experiment (Figure 1b). Brain patterns are
labeled according to which experimental condition gener-
ated the pattern; this labeling procedure needs to account
for the fact that the hemodynamic response measured by
the scanner is delayed and smeared out in time, relative to
the instigating neural event. The third step, classifier
training, involves feeding a subset of these labeled pat-
terns into a multivariate pattern classification algorithm.
Based on these patterns, the classification algorithm
learns a function that maps between voxel activity
Figure 1. Illustration of a hypothetical experiment and how it could be analyzed using

‘feature selection’ procedure is used to determine which voxels will be included in th

discrete brain patterns that correspond to the pattern of activity across the selected v

corresponding experimental condition (bottle versus shoe). The patterns are divided into

classifier function that maps between brain patterns and experimental conditions. (d) Th

the high-dimensional space of voxel patterns (collapsed here to 2-D for illustrative pu

category. The background color of the figure corresponds to the guess the classifier m

membership for patterns from the test set. The figure shows one example of the classif

the classifier misidentifying a shoe pattern (blue dot) as a bottle.

Please cite this article as: Kenneth A. Norman et al., Beyondmind-reading: multi-voxel pattern a

www.sciencedirect.com
patterns and experimental conditions (Figure 1c). The
fourth step is generalization testing: Given a new pattern
of brain activity (not previously presented to the classifier),
can the trained classifier correctly determine the experi-
mental condition associated with that pattern (Figure 1d)?

Choosing a classifier

Machine learning researchers have developed an enor-
mous range of classification algorithms that can poten-
tially be used in MVPA studies (see [37] for details of the
classification algorithms discussed below). Most MVPA
studies have used linear classifiers, including correla-
tion-based classifiers [16,17], neural networks without a
hidden layer [29], linear discriminant analysis
[19,22,24,28], linear support vector machines (SVMs)
[20,23,26], and Gaussian Naive Bayes classifiers [26].
These classifiers all compute a weighted sum of voxel
activity values; this weighted sum is then passed through
MVPA. (a) Subjects view stimuli from two object categories (bottles and shoes). A

e classification analysis (see Box 1). (b) The fMRI time series is decomposed into

oxels at a particular point in time. Each brain pattern is labeled according to the

a training set and a testing set. (c) Patterns from the training set are used to train a

e trained classifier function defines a decision boundary (red dashed line, right) in

rposes). Each dot corresponds to a pattern and the color of the dot indicates its

akes for patterns in that region. The trained classifier is used to predict category

ier correctly identifying a bottle pattern (green dot) as a bottle, and one example of
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Box 1. Feature selection methods

As discussed in Section 1, one of the defining features of MVPA is

that it factors in contributions from voxels that do not meet

conventional criteria for statistical significance. However, there is a

cost to being too inclusive: Voxels with especially high levels of

noise (and low levels of signal) can sharply reduce classifier

performance. This suggests that classifier performance will benefit

from feature selection methods that can remove noisy and/or

uninformative voxels before classification. At this point, we have

enough experience with feature selection to know that it is valuable,

but our understanding of how to best implement feature selection is

still preliminary.

One way to select features is to limit the analysis to specific

anatomical regions (e.g. Haxby et al. [16] focused on ventral

temporal cortex in their study of visual object processing). Another

approach to feature selection is to compute univariate (voxel-wise)

statistics; for example, one can select out the voxels that, considered

individually, do the best job of discriminating between the

conditions of interest [16,29,26]. Indeed, any univariate statistic

used in conventional fMRI analysis can be used for feature selection.

The main concern with univariate feature selection methods is

that, even with a liberal threshold, it is possible that these methods

are discarding voxels that (when taken in aggregate) would have

provided useful information about the experimental conditions. We

can avoid this problem if we replace univariate feature selection

methods with multivariate feature selection methods that evaluate

sets of voxels, based on the informativeness of patterns of activity

expressed over those voxels. A challenge faced by this approach is

that (because of combinatorial explosion issues) the space of voxel

sets is much too large to search exhaustively. This issue can be

addressed by constraining the search to sets of spatially adjacent

voxels [15], or by adding voxels to the set one a time to maximize (at

each step) the multivariate goodness of the current voxel set (see

[47] and Bryan and Haxby, unpublished).

Box 2. Classifier-based brain mapping

If a classifier performs well, what inferences can we make about the

properties of the voxels being classified?

Inferences about specific voxels

Given a trained classifier, several methods have been developed for

reading out which voxels are contributing the most to classifier

performance. For linear classifiers, one can discern the contribution

of voxel i to detecting category j by looking at the weight between

voxel i and category j [23,29,32]. For nonlinear classifiers (e.g.

nonlinear support vector machines), the process of determining a

voxel’s importance is more complex, insofar as each voxel’s

contribution to recognizing a category is a function of multiple

learned weights (see, e.g. [21,27] for ways of addressing this

problem). Maps of ‘important’ voxels derived using the above

methods provide insight into the basis for classification. However,

these maps are not guaranteed to include all the voxels that are

involved in representing the categories of interest. For example,

classifiers tend to focus on discriminative features and ignore

features that are shared across categories.

Inferences about voxel sets

The primary added value of the MVPA approach (with regard to

brain mapping) is that we can characterize the coding properties of

voxel sets (i.e. does region y code for cognitive dimension x) by

looking at how well a classifier performs when applied to that voxel

set (see Section 1). However, as pointed out by Kamitani and Tong

[23], the inferences that one can make about neural coding depend

on the type of classifier that is being used. Because linear classifiers

integrate the evidence provided by each voxel (separately) about

category membership (see Section 2), linear classifiers will show

above-chance classification only if some voxels are individually

sensitive to the dimension of interest. By contrast, nonlinear

classifiers can show good classification even if none of the input

voxels are individually sensitive to the dimension of interest. For

example, multi-layer neural networks can learn to classify the

emotion expressed by a face based on a bitmap photograph of the

face [48], even though single pixels in the bitmap do not provide

information about emotion; in this case, emotion information is

implicit in the pattern of input layer activity and is rendered explicit

(via a series of nonlinear transformations) by the classifier. This

property of nonlinear classifiers means that, if they perform well, it

is unclear whether input voxels (taken on their own) directly code for

the dimension of interest, or whether the classifier is extracting

information that is implicitly represented in the pattern of activity

across voxels.
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a decision function, which effectively creates a threshold
for saying whether or not a category is present.

Other MVPA analyses have used nonlinear classifiers;
examples include nonlinear support vector machines
[20,27] and neural networks with hidden layers [21].
The key difference between nonlinear and linear classifiers
is that nonlinear classifiers can respond to high-level
feature conjunctions in a way that differs from their
response to individual features. For example, a nonlinear
classifier can learn that coactivity of voxels a and b signals
the presence of a particular cognitive state, even if voxel a
and voxel b (considered on their own) do not convey infor-
mation about that state.

Although nonlinear classifiers are more powerful than
linear classifiers (in terms of the types of mappings they
can learn), extant MVPA studies have not found a clear
performance benefit for nonlinear versus linear classifiers
(for a direct comparison, see [20]). Furthermore, Kamitani
and Tong [23] have argued that good performance in a
nonlinear classifier is harder to interpret than good per-
formance in a linear classifier (Box 2).

MVPA case studies: going beyond mind-reading
The previous two sections focused on describing the MVPA
method and how it affords increased sensitivity in detect-
ing cognitive states. In this section, we present two case
studies that show how these methodological advances are
being harnessed to test theories of how the brain processes
visual information [23,24]. Box 3 presents a case study of
how MVPA methods are being employed to study memory
retrieval [29].
Please cite this article as: Kenneth A. Norman et al., Beyondmind-reading: multi-voxel pattern a

www.sciencedirect.com
Decoding the neural representation of visual object

categories

The finding (mentioned in Section 1) that different visual
object categories are associated with different voxel activ-
ity patterns in VT cortex [16,17,19–22] does not, by itself,
tell us how these object categories are represented. Several
researchers have conducted follow-up analyses to explore
the structure of object category representations in VT. In
one such analysis, Haxby et al. [16,38] found that voxels
showing submaximal responses are informative about
category membership: Discrimination between pairs of
categories (e.g. shoes versus bottles) was still well above
chance when the voxels that responded most strongly to
those categories (relative to the other categories) were
excluded from the analysis; for a related analysis see
[22]. This finding suggests that the neural representations
of categories such as faces and houses have a broader
spatial extent than was previously thought to be the case.
Importantly, these results do not imply that all of the
voxels in VT are equally involved in representing all
categories; for example, voxels in the fusiform face area
nalysis of fMRI data, TRENDS in Cognitive Sciences (2006), doi:10.1016/j.tics.2006.07.005.
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Box 3. Using MVPA to study memory search

A recent study by Polyn et al. [29] set out to test the contextual

reinstatement hypothesis of memory search [49,50]. This hypothesis

states that subjects target memories from a particular episode (or

type of episode) by activating knowledge about the general properties

of that event, which in turn triggers recall of specific details from that

event. To test this hypothesis, MVPA methods were used to calculate

the degree to which patterns of brain activity recorded during recall

matched those seen during the initial encoding phase, on a time-

varying basis (see Figure I). During the initial part of the experiment,

subjects studied celebrity faces, famous locations, and common

objects. A neural network classifier was trained to recognize patterns

of brain activity corresponding to studying faces, locations, and

objects. Then, subjects were asked to recall (in any order they liked,

over a three minute period) the names of all of the faces, locations,

and objects that they had studied earlier in the experiment, and the

classifier was used to track the re-emergence (during this recall

period) of brain patterns from the study phase.

In keeping with the idea that subjects think about general event

properties to remember specific details, Polyn et al. found that

category-specific patterns of brain activity (associated with studying

faces, locations, and objects) started to emerge �5.4 s before recall of

specific items from that category [29]. Over the course of the recall

period, fluctuations in the strength of ‘neural reinstatement’ were

highly correlated with subjects’ recall behavior (Figure I).

This study is not the first to show reinstatement of study-phase

brain activity during recall [41–45]. The main difference between the

Polyn et al. study and these other studies is that, because of the

increased sensitivity of the MVPA approach, Polyn et al. were able to

track the temporal dynamics of reinstatement over the course of the

recall period. The finding that reinstatement precedes recall provides

some initial evidence in support of the contextual reinstatement

hypothesis. In future studies, it will be important to show that the

results extend to other types of recall ‘contexts’ besides semantic

categories.

Figure I. Illustration of how brain activity during recall relates to recall behavior, in a single subject. Each point on the x-axis corresponds to a 1.8 s interval (during the

3-min recall period). The blue, red, and green lines correspond to the classifier’s estimate as to how strongly the subject is reinstating brain patterns characteristic of

face-study, location-study, and object-study at that point in time. The blue, red, and green dots indicate time points where subjects recalled faces, locations, and objects;

the dots were shifted forward by three time-points, to account for the lag in the peak hemodynamic response. The graph illustrates the strong correspondence between

the classifier’s estimate of category-specific brain activity, and the subject’s actual recall behavior. (Reprinted with permission from [29].)
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do not appear to discriminate between shoes and bottles
[17]. Overall, the results suggest that information is repre-
sented in a partially distributed fashion in VT: The neural
substrates of different categories overlap, and the degree of
overlap is proportional to the similarity of the categories.
In support of this claim, O’Toole et al. [22] applied
a classifier to VT cortex and showed that the classifier’s
ability to discriminate between different object types
decreased as the visual similarity of those objects
increased (see also [21]).

Decoding the neural representation of line orientation.

A recent study by Kamitani and Tong [23] used MVPA to
study the neural representation of line orientation in
visual cortex. Electrophysiological and optical imaging
studies have established that orientation-selectivity in
primary visual cortex (V1) exists at the level of cortical
columns, which cycle through all orientations
approximately every millimeter (see, e.g. [39]). Given
that multiple orientation-selective columns fit within a
single 3-mm cubic fMRI voxel, the Kamitani and Tong
study constitutes a test of whether MVPA methods can
Please cite this article as: Kenneth A. Norman et al., Beyondmind-reading: multi-voxel pattern a

www.sciencedirect.com
be used to characterize neural codes that exist at the
subvoxel level.

To assess the sensitivity of different regions of visual
cortex to orientation information, linear support vector
machines were trained to recognize patterns of brain
activity associatedwith viewing gratings (striped patterns)
with different orientations. There were eight classifiers in
total, corresponding to angles from 0 degrees to 157.5
degrees in 22.5-degree increments. After training, the
classifiers were applied to new patterns and the output
of the classifiers was used to estimate the orientation of the
viewed gratings (by selecting the orientation correspond-
ing to the classifier with the largest output value). The
accuracy of these linear classifiers, applied to a particular
region, can be used as an aggregate index of the sensitivity
of individual voxels in that region (Box 2).

The study found that, although orientation is coded at a
subvoxel level in early visual cortex, there were small
irregularities in how strongly different orientations were
represented by each voxel. By combining information
across multiple voxels, the classifier was able to exploit
these small irregularities to generate an accurate readout
nalysis of fMRI data, TRENDS in Cognitive Sciences (2006), doi:10.1016/j.tics.2006.07.005.
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Figure 2. Orientation decoding from fMRI activity in visual cortex. Parts (a) and (b)

(adapted with permission from [51]) illustrate how voxels acquire weak sensitivity

for line orientation. Part (a) shows a simulated orientation tuning map for a patch

of visual cortex (different colors indicate different orientations), with a voxel-sized

(3 mm) grid superimposed on the map. Part (b) shows the distribution of orient-

ation selectivity values for each of the nine ‘voxels’ shown in Part (a). Although all

of the orientations are represented inside each voxel, the distribution of selectivity

values is slightly different for each voxel. The classifier is able to exploit these

small per-voxel irregularities in selectivity to decode orientation from multi-voxel

patterns (see also [24], Supplementary Figure 1). Part (c) (adapted with permission

from [23]) illustrates the performance of the classifier in [23] for a single subject.

The polar plots show the classifier’s orientation predictions for eight different (a-

ctual) line orientations; predictions were based on 400 voxels in V1 and V2. For

these voxels, most of the classifier’s predictions exactly matched the correct ori-

entation, and the classifier’s (rare) mistakes were all tightly clustered around the

correct orientation.

Box 4. Questions for future research

� The line-orientation studies described in Section 3 [23,24] showed

that MVPA can be used to confirm the properties of a well-

understood neural code. Can we use MVPA to decipher the

properties of neural codes that are less well-understood, e.g. the

neural code for face identity?

� What are the limits on the kinds of representations that can be

resolved by applying MVPA methods to standard-resolution fMRI

data? What are the limits on the kinds of representations that can

be resolved using high-resolution fMRI data?

� Existing methods for aligning brain data across subjects (using

structural data) are suboptimal for MVPA analyses, because these

methods blur out high-spatial-frequency patterns that (in indivi-

dual subjects) carry information about cognitive states. Can we

devise improved methods for translating between subjects’

functional brain states, such that a classifier trained on high-

spatial-frequency information in subject A will generalize well to

subject B?

� One of the weaknesses of extant MVPA methods is that the

classifier is not provided with information about spatial relation-

ships between the to-be-classified voxels (i.e. which voxels are

nearby in 3-D space). As such, classifiers have no natural way to

leverage the topography of cortical representations – the fact that

spatially proximal voxels tend to represent similar things. How

can we make better use of spatial information in MVPA analyses?

� What is the most effective way of searching the brain for voxel

sets that optimally satisfy a multivariate criterion (e.g. classifia-

bility)?

� Can we use MVPA methods to improve our ability to recognize

cognitive states (from fMRI) in real time? If so, can we use these

methods to provide ‘cognitive biofeedback’ to help subjects learn

to control their thoughts [52,53] or external devices?

� Can we use MVPA to study how representations change as a

function of learning?

� Most of the MVPA studies reviewed here treat cognitive states as

discrete, unitary entities (e.g. is the person viewing a shoe or a

bottle). This conflicts with the view, prevalent among psycholo-

gists, that cognitive states can be viewed as points in a high-

dimensional ‘cognitive space’, where the distance between two

points in this cognitive space corresponds to the psychological

similarity of the two cognitive states (see [54] for discussion of how

to build a cognitive ‘face space’ based on face similarity ratings).

What are the most effective methods for mapping (in a continuous

fashion) between brain states and points in cognitive space?
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of line orientation based on activity in areas V1 and V2.
They also found that the classifier was more likely to
confuse similar (versus dissimilar) orientations
(Figure 2). When the classifier was applied to other visual
subregions, lower-level regions showed more orientation-
selectivity than higher-level regions: V1/V2 showed the
best sensitivity, V3 was slightly worse, V4 was slightly
worse still, and there was no orientation selectivity in area
MT+. Overall, these results are highly consistent with the
results of prior studies of how orientation is represented in
different parts of visual cortex [40].

A study conducted by Haynes and Rees [24] provides
converging evidence for the representation of line orienta-
tion information in early visual cortex. They used a visual
masking technique to prevent subjects from consciously
perceiving the orientation of presented gratings; behavio-
rally, subjects’ ability to discriminate between line orien-
tations was at chance. Despite this total lack of behavioral
discrimination ability, a linear discriminant classifier
(applied to V1 voxels) was nonetheless able to decode
the orientation of the masked lines with greater than
chance accuracy.

Conclusions
MVPA has evolved extensively in the 5 years since the
publication of the Haxby et al. [16] object categories study,
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and we expect that MVPA methods will continue to evolve
rapidly in the coming years. A promising development in
this regard is the debut, earlier this year, of an annual
‘brain activity interpretation’ competition (see http://
www.ebc.pitt.edu/competition.html). This competition
should facilitate the development of better algorithms
for feature selection and classification by allowing
researchers to benchmark different algorithms on a com-
mon dataset. Other factors should also boost MVPA per-
formance: Improvements in the spatial resolution of fMRI
will make it possible to resolve even finer-grained cognitive
distinctions [46], and improvements in computer speedwill
make it possible to search through an even larger number
of voxel sets (to find the most informative set; see Box 1).
For all of these reasons, we believe thatMVPA has a bright
future (see Box 4) as a tool for characterizing how informa-
tion is represented and processed in the brain.
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