Some Probability and Statistics

David M. Blei

COS424
Princeton University

February 12, 2007
Who wants to scribe?
Random variable

• Probability is about *random variables*.
• A random variable is any “probabilistic” outcome.
• For example,
 • The flip of a coin
 • The height of someone chosen randomly from a population
• We’ll see that it’s sometimes useful to think of quantities that are not strictly probabilistic as random variables.
 • The temperature on 11/12/2013
 • The temperature on 03/04/1905
 • The number of times “streetlight” appears in a document
Random variable

- Random variables take on values in a sample space.
- They can be discrete or continuous:
 - Coin flip: \{H, T\}
 - Height: positive real values \((0, \infty)\)
 - Temperature: real values \((-\infty, \infty)\)
 - Number of words in a document: Positive integers \(\{1, 2, \ldots\}\)
- We call the values atoms.
- Denote the random variable with a capital letter; denote a realization of the random variable with a lower case letter.
- E.g., \(X\) is a coin flip, \(x\) is the value \((H\ or\ T)\) of that coin flip.
Discrete distribution

- A discrete distribution assigns a probability to every atom in the sample space.
- For example, if X is an (unfair) coin, then:

 \[P(X = H) = 0.7 \]
 \[P(X = T) = 0.3 \]

- The probabilities over the entire space must sum to one:
 \[\sum_x P(X = x) = 1 \]

- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3:
 \[P(D > 3) = P(D = 4) + P(D = 5) + P(D = 6) \]
• An *atom* is a point in the box
• An *event* is a subset of atoms (e.g., $d > 3$)
• The probability of an event is sum of probabilities of its atoms.
Joint distribution

- Typically, we consider collections of random variables.
- The joint distribution is a distribution over the configuration of all the random variables in the ensemble.
- For example, imagine flipping 4 coins. The joint distribution is over the space of all possible outcomes of the four coins.

\[
P(HHHH) = 0.0625 \\
P(HHHT) = 0.0625 \\
P(HHTH) = 0.0625 \\
\ldots
\]

- You can think of it as a single random variable with 16 values.
Visualizing a joint distribution
A conditional distribution is the distribution of a random variable given some evidence.

$P(X = x | Y = y)$ is the probability that $X = x$ when $Y = y$.

For example,

$P(I \text{ listen to Steely Dan}) = 0.5$

$P(I \text{ listen to Steely Dan} | \text{Toni is home}) = 0.1$

$P(I \text{ listen to Steely Dan} | \text{Toni is not home}) = 0.7$

$P(X = x | Y = y)$ is a different distribution for each value of y

$$\sum_x P(X = x | Y = y) = 1$$

$$\sum_y P(X = x | Y = y) \neq 1 \quad (necessarily)$$
Definition of conditional probability

- Conditional probability is defined as:

\[
P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)},
\]

which holds when \(P(Y) > 0 \).

- In the Venn diagram, this is the relative probability of \(X = x \) in the space where \(Y = y \).
The chain rule

- The definition of conditional probability lets us derive the *chain rule*, which let's us define the joint distribution as a product of conditionals:

\[P(X, Y) = P(X, Y) \frac{P(Y)}{P(Y)} = P(X \mid Y)P(Y) \]

- For example, let \(Y \) be a disease and \(X \) be a symptom. We may know \(P(X \mid Y) \) and \(P(Y) \) from data. Use the chain rule to obtain the probability of having the disease and the symptom.

- In general, for any set of \(N \) variables

\[P(X_1, \ldots, X_N) = \prod_{n=1}^{N} P(X_n \mid X_1, \ldots, X_{n-1}) \]
Marginalization

- Given a collection of random variables, we are often only interested in a subset of them.
- For example, compute $P(X)$ from a joint distribution $P(X, Y, Z)$.
- Can do this with marginalization

$$P(X) = \sum_y \sum_z P(X, y, z)$$

- Derived from the chain rule:

$$\sum_y \sum_z P(X, y, z) = \sum_y \sum_z P(X)P(y, z | X)$$

$$= P(X) \sum_y \sum_z P(y, z | X)$$

$$= P(X)$$
Bayes rule

- From the chain rule and marginalization, we obtain Bayes rule.

\[P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{\sum_y P(X \mid Y = y)P(Y = y)} \]

- Again, let \(Y \) be a disease and \(X \) be a symptom. From \(P(X \mid Y) \) and \(P(Y) \), we can compute the (useful) quantity \(P(Y \mid X) \).

- Bayes rule is important in Bayesian statistics, where \(Y \) is a parameter that controls the distribution of \(X \).
Independence

- Random variables are *independent* if knowing about X tells us nothing about Y.

 $$P(Y \mid X) = P(Y)$$

- This means that their joint distribution factorizes,

 $$X \perp \!\!\!\!\!\!\!\!\!\!\!\perp Y \iff P(X, Y) = P(X)P(Y).$$

- Why? The chain rule

 $$P(X, Y) = P(X)P(Y \mid X)$$

 $$= P(X)P(Y)$$
Independence examples

• Examples of independent random variables:
 • Flipping a coin once / flipping the same coin a second time
 • You use an electric toothbrush / blue is your favorite color

• Examples of not independent random variables:
 • Registered as a Republican / voted for Bush in the last election
 • The color of the sky / The time of day
Are these independent?

- Two twenty-sided dice
- Rolling three dice and computing \((D_1 + D_2, D_2 + D_3)\)
- \# enrolled students and the temperature outside today
- \# attending students and the temperature outside today
• Suppose we have two coins, one biased and one fair,

\[P(C_1 = H) = 0.5 \quad P(C_2 = H) = 0.7. \]

• We choose one of the coins at random \(Z \in \{1, 2\} \), flip \(C_Z \) twice, and record the outcome \((X, Y) \).

• Question: Are \(X \) and \(Y \) independent?

• What if we knew which coin was flipped \(Z \)?
Conditional independence

- X and Y are *conditionally independent* given Z.

\[P(Y \mid X, Z = z) = P(Y \mid Z = z) \]

for all possible values of z.

- Again, this implies a factorization

\[X \perp \!
\perp Y \mid Z \iff P(X, Y \mid Z = z) = P(X \mid Z = z)P(Y \mid Z = z), \]

for all possible values of z.

Continuous random variables

- We’ve only used discrete random variables so far (e.g., dice)
- Random variables can be continuous.
- We need a density $p(x)$, which integrates to one. E.g., if $x \in \mathbb{R}$ then
 $$\int_{-\infty}^{\infty} p(x) dx = 1$$
- Probabilities are integrals over smaller intervals. E.g.,
 $$P(X \in (-2.4, 6.5)) = \int_{-2.4}^{6.5} p(x) dx$$
- Notice when we use P, p, X, and x.
The Gaussian distribution

- The Gaussian (or Normal) is a continuous distribution.

\[
p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
\]

- The density of a point \(x\) is proportional to the negative exponentiated half distance to \(\mu\) scaled by \(\sigma^2\).
- \(\mu\) is called the mean; \(\sigma^2\) is called the variance.
The mean μ controls the location of the bump.

The variance σ^2 controls the spread of the bump.
Notation

- For discrete RV’s, p denotes the *probability mass function*, which is the same as the distribution on atoms.
- (I.e., we can use P and p interchangeably for atoms.)
- For continuous RV’s, p is the density and they are not interchangeable.
- This is an unpleasant detail. Ask when you are confused.
Expectation

• Consider a function of a random variable, \(f(X) \). (Notice: \(f(X) \) is also a random variable.)

• The expectation is a weighted average of \(f \), where the weighting is determined by \(p(x) \),

\[
E[f(X)] = \sum_x p(x)f(x)
\]

• In the continuous case, the expectation is an integral

\[
E[f(X)] = \int p(x)f(x)\,dx
\]
Conditional expectation

- The conditional expectation is defined similarly

\[E[f(X) \mid Y = y] = \sum_x p(x \mid y)f(x) \]

- Question: What is \(E[f(X) \mid Y = y] \)? What is \(E[f(X) \mid Y] \)?

- \(E[f(X) \mid Y = y] \) is a scalar.

- \(E[f(X) \mid Y] \) is a (function of a) random variable.
Iterated expectation

Let’s take the expectation of $E[f(X) \mid Y]$.

$$E[E[f(X)] \mid Y] = \sum_y p(y) E[f(X) \mid Y = y]$$

$$= \sum_y p(y) \sum_x p(x \mid y) f(x)$$

$$= \sum_y \sum_x p(x, y) f(x)$$

$$= \sum_y \sum_x p(x) p(y \mid x) f(x)$$

$$= \sum_x p(x) f(x) \sum_y p(y \mid x)$$

$$= \sum_x p(x) f(x)$$

$$= E[f(X)]$$
Flips to the first heads

- We flip a coin with probability π of heads until we see a heads.
- What is the expected waiting time for a heads?

$$E[N] = 1\pi + 2(1 - \pi)\pi + 3(1 - \pi)^2\pi + \ldots$$

$$= \sum_{n=1}^{\infty} n(1 - \pi)^{(n-1)}\pi$$
Let’s use iterated expectation

\[
E[N] = E[E[N | X_1]] \\
= \pi \cdot E[N | X_1 = H] + (1 - \pi)E[N | X_1 = T] \\
= \pi \cdot 1 + (1 - \pi)(E[N] + 1)] \\
= \pi + 1 - \pi + (1 - \pi)E[N] \\
= 1/\pi
\]
Probability models

- Probability distributions are used as *models* of data that we observe.
- Pretend that data is drawn from an unknown distribution.
- *Infer* the properties of that distribution from the data.
- For example
 - the bias of a coin
 - the average height of a student
 - the chance that someone will vote for H. Clinton
 - the chance that someone from Vermont will vote for H. Clinton
 - the proportion of gold in a mountain
 - the number of bacteria in our body
 - the evolutionary rate at which genes mutate
- We will see many models in this class.
Independent and identically distributed (IID) variables are:

1. Independent
2. Identically distributed

If we repeatedly flip the same coin N times and record the outcome, then X_1, \ldots, X_N are IID.

The IID assumption can be useful in data analysis.
What is a parameter?

- Parameters are values that index a distribution.
- A coin flip is a Bernoulli. Its parameter is the probability of heads.

\[
p(x \mid \pi) = \pi^{1[x=H]}(1 - \pi)^{1[x=T]},
\]

where \(1[\cdot]\) is called an indicator function. It is 1 when its argument is true and 0 otherwise.
- Changing \(\pi\) leads to different Bernoulli distributions.
- A Gaussian has two parameters, the mean and variance.

\[
p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
\]
The likelihood function

- Again, suppose we flip a coin N times and record the outcomes.
- Further suppose that we think that the probability of heads is π. (This is distinct from whatever the probability of heads “really” is.)
- Given π, the probability of an observed sequence is

$$p(x_1, \ldots, x_N \mid \pi) = \prod_{n=1}^{N} \pi^{1[x_n=H]}(1 - \pi)^{1[x_n=T]}$$
The log likelihood

- As a function of π, the probability of a set of observations is called the likelihood function.

$$p(x_1, \ldots, x_N \mid \pi) = \prod_{n=1}^{N} \pi^{1[x_n=H]}(1 - \pi)^{1[x_n=T]}$$

- Taking logs, this is the log likelihood function.

$$\mathcal{L}(\pi) = \sum_{n=1}^{N} 1[x_n = H] \log \pi + 1[x_n = T] \log(1 - \pi)$$
• We observe $HHTHTH$.
• The value of π that maximizes the log likelihood is $2/3$.
The maximum likelihood estimate

- The *maximum likelihood estimate* is the value of the parameter that maximizes the log likelihood (equivalently, the likelihood).
- In the Bernoulli example, it is the proportion of heads.

\[\hat{\pi} = \frac{1}{N} \sum_{n=1}^{N} 1[x_n = H] \]

- In a sense, this is the value that best explains our observations.
Why is the MLE good?

• The MLE is *consistent*.
• Flip a coin \(N \) times with true bias \(\pi^* \).
• Estimate the parameter from \(x_1, \ldots, x_N \) with the MLE \(\hat{\pi} \).
• Then,

\[
\lim_{N \to \infty} \hat{\pi} = \pi^*
\]

• This is a good thing. It lets us sleep at night.
5000 coin flips

1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1
0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1
1 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1
0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1
1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0
1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1
1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1
0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0
0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1
0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1
0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1...
Consistency of the MLE example
Gaussian log likelihood

- Suppose we observe x_1, \ldots, x_N continuous.
- We choose to model them with a Gaussian

$$p(x_1, \ldots, x_N \mid \mu, \sigma^2) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ \frac{-(x_n - \mu)^2}{2\sigma^2} \right\}$$

- The log likelihood is

$$\mathcal{L}(\mu, \sigma) = -\frac{1}{2} N \log(2\pi\sigma^2) - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}$$
Gaussian MLE

- The MLE of the mean is the *sample mean*
 \[\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \]

- The MLE of the variance is the *sample variance*
 \[\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \]

- E.g., approval ratings of the presidents from 1945 to 1975.
Gaussian analysis of approval ratings
Model pitfalls

• What’s wrong with this analysis?
 • Assigns positive probability to numbers < 0 and > 100
 • Ignores the sequential nature of the data
 • Assumes that approval ratings are IID!
• “All models are wrong. Some models are useful.”
Future probability concepts in this class

• Naive Bayes classification
• Linear regression and logistic regression
• Hidden variables, mixture models, and the EM algorithm
• Graphical models
• Factor analysis
• Sequential models

And if there is time...
 • Generalized linear models
 • Bayesian models