
COS 424: Interacting with Data

Homework #4 Spring 2007
Regression Due: Wednesday, April 18

Written Exercises

See the course website for important information about collaboration and late policies,
as well as where and when to turn in assignments. Be sure to show your work and justify
your answers.

Problem E-1

Consider a mixture of Gaussians model defined by K means µ1, . . . , µK , variance σ2, and
proportions π = 〈π1, . . . , πK〉. In such a model, each (real-valued) Xn is generated as fol-
lows: First, one of the mixture components Zn ∈ {1, . . . ,K} is chosen at random according
to π (so that Zn = z with probability πz). Then, given that Zn = z, Xn is chosen according
to a Gaussian distribution with mean µz and variance σ2. Note that only Xn is visible; Zn

is hidden. We assume that σ > 0 is known and fixed.

a. Give a graphical model depiction of this process, including the parameters.

b. Given data X1, . . . ,XN , describe in detail the EM algorithm for estimating µ1, . . . , µK

and π.

c. Argue that as σ2 → 0, this algorithm approaches the K-means algorithm.

d. Argue directly that as σ2 → 0, the EM objective approaches the K-means objective.

Problem E-2

As is usual for linear regression, suppose we are given training data (x1, y1), . . . , (xm, ym)
where yi ∈ R and xi ∈ R

n (with components xij). In this problem, we seek linear models

of the form f̂(x) = w0 + w · x where w0 is the scalar intercept term, and w = 〈w1, . . . , wn〉
is a (column) vector of weights over the n inputs. Consider the problem in ridge regression
of minimizing

m
∑

i=1

(w0 + w · xi − yi)
2 + λ ‖w‖2

2
. (1)

Here, as in Hastie et al. (but unlike in class), we include an explicit intercept term w0, but
omit this term from the regression penalty.

a. Suppose for this part only that
∑m

i=1 xij = 0 for all j. Let X be the m × n matrix
of all inputs in which the i-th row is equal to (the transpose of) xi, and let y be the
(column) vector whose i-th entry is yi. Show that the solution of (1) is given by

ŵ0 =
1

m

m
∑

i=1

yi

ŵ = (X>X + λI)−1X>y

where I is the n × n identity matrix.



b. Returning to the general case (in which the input vectors do not sum to zero), let

aj =
1

m

m
∑

i=1

xij

and define x′
i by x′

ij = xij − aj. Note that, after centering in this fashion, the new
input vectors sum to zero so that the technique in the last part can be applied. Show
that minimizing (1) is equivalent to minimizing

m
∑

i=1

(w′

0 + w′ · x′

i − yi)
2 + λ

∥

∥w′
∥

∥

2

2
. (2)

In other words, if ŵ0, ŵ is the solution that minimizes (1), and ŵ′
0
, ŵ′ is the solution

that minimizes (2), show that ŵ0 + ŵ ·x = ŵ′
0
+ ŵ′ ·x′ for any x and its transform x′.

Moreover, given a solution ŵ′
0
, ŵ′ to (2), show explicitly how to transform it directly

into a solution ŵ0, ŵ to (1).

c. Suppose that the inputs are both centered and scaled. In other words, suppose we
instead define x′

i by x′
ij = (xij − aj)/sj for some constants sj. Show that the min-

imization problems (1) and (2) need no longer be equivalent (in the sense described
above). Show nevertheless how a solution ŵ′

0
, ŵ′ to (2) can be transformed back into

ŵ0, ŵ, not necessarily a solution to (1), but for which ŵ0 + ŵ · x = ŵ′
0

+ ŵ′ · x′ for
any x and its transform x′.

Problem E-3

In this problem, we will show that ridge regression can be kernelized by showing that the
minimization criterion can be rewritten in terms only of inner products of input vectors.
Assume a training set as in the last problem.

Let w ∈ R
n be any vector, and let α1, . . . , αm be chosen to minimize

F (α1, . . . , αm) =

∥

∥

∥

∥

∥

w −
m

∑

i=1

αixi

∥

∥

∥

∥

∥

2

2

.

Let

v =
m

∑

i=1

αixi.

a. Prove that v · xi = w · xi for all i.
(Hint: consider the partial derivatives of F .)

b. Prove that ‖v‖
2

≤ ‖w‖
2

with equality if and only if v = w.

c. Consider minimizing
m

∑

i=1

(w · xi − yi)
2 + λ ‖w‖2

2
(3)

where λ ≥ 0. Show that this minimization problem must always have a solution w

which is a linear combination of x1, . . . ,xm. (You do not need to show that every

solution has this form, just that there always exists at least one solution in this form.)

d. Substituting
∑

i αixi for w, rewrite (3) so that the input vectors xi only appear as
inner products with other input vectors, thus showing that this minimization problem
can be kernelized.
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Problem E-4

In class, we showed that if X and Y are random variables with Y real-valued, then

E
[

(f̂(X) − Y )2
]

is minimized over all choices of the function f̂ when f̂(x) = E [Y |x], that is, when f̂(x) is
the expected value of Y for a given x. In this problem, we will see what happens if we
instead use

E
[

|f̂(X) − Y |
]

.

In particular, we will see that this expectation of the “absolute loss” is minimized over all
choices of f̂ when f̂(x) is equal to the median of Y given x. (We say that m is a median of
a real-valued random variable Z if Pr[Z ≥ m] ≥ 1/2 and Pr[Z ≤ m] ≥ 1/2. Note that the
median is not always unique.)

To simplify the problem, we fix x (as we did in class) and also assume that Y is con-
centrated on a finite set of values. Thus, the problem can be reformulated as follows: Let
c1 < c2 < · · · < c` be the finite set of values in Y ’s range, and let Y be equal to cj with
probability pj (where we assume without loss of generality that the pj’s are all strictly
positive).

Prove that
E

[

|f̂ − Y |
]

is minimized over f̂ ∈ R if and only if f̂ is equal to a median of Y .

(Hint: First determine the value f̂ that minimizes E
[

|f̂ − Y |
]

when f̂ is restricted to lie in the

confined range [ci, ci+1]. Then use your answer to prove the general result.)
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Experiments and programming in R

Data and code: The data, helper code and function templates for the problems below
can be obtained by following the links on the webpage for this assignment. Once downloaded
into a suitable location, just type source("helper.R") to load all of the datasets described
below (other than co2 which is already built in to R). In every case, this will load training
and test sets as appropriately named data frames. The quantity to be predicted will always
be the last column of these data frames.

What to turn in: You should turn in the file stubs.R with all of the functions filled in.
Also turn in any other files that you may have created and used to complete this assignment,
for instance containing additional R functions; be sure to include the R code that you used to
complete each of the problems. These should all be submitted electronically using moodle,
as should your predictions for optional Problem R-5, if you choose to complete it. Your
written answers to the various problems, including any plots that you generated, should be
submitted in hard copy together with your written exercises.

Problem R-1

Implement the ridge regression algorithm as described in Section 3.4.3 of Hastie et al. (as
well as Problem E-2 above). Use exactly the method they describe in which an implicit
intercept term is always included in the regression, but is always omitted from the penalty
term used by ridge regression; use the “centering” technique they describe for this purpose.
Also, each input (a.k.a feature or dimension or variable) should be scaled to have unit
variance on the training set. In other words, if the training examples are x1, . . . ,xm where
xij is the j-th input value of xi, then each xij should be replaced by (xij − aj)/sj where

aj =
1

m

m
∑

i=1

xij

and

sj =

√

√

√

√

1

m

m
∑

i=1

(xij − aj)2.

To make predictions on test examples, you will need to scale and center them in the same
fashion (using the same constants aj and sj computed only on the training set).

Call your procedure ridge(); the parameters and return values for this procedure are
detailed in the provided file called stubs.R.

Test your procedure to be sure it is working. For instance, you can try it on small
data matrices for which the answer can be computed by hand. Write a short paragraph
explaining what steps you took to be sure your code is working properly (this is crucial
since you will be using this function throughout the rest of the assignment).

Problem R-2

The co2 time series dataset records atmospheric concentrations of carbon dioxide monthly
from 1959 to 1997. This dataset should already be built in to standard distributions of R
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as the time-series object co2. (Be careful not to confuse it with the CO2 dataset, also built
in to R.) The goal is to estimate future CO2 concentrations as a function of the year t. We
will experiment with a number of bases, or sets of functions. For instance, the basis {t, t2}
means that we are seeking an approximation of CO2 concentration of the form

w0 + w1t + w2t
2,

where t is the date in years, possibly with a fractional part (as returned, for instance, by
time(co2)). (On this assignment, we always implicitly include the intercept term.)

Write a function called run.co2() that runs your ridge regression code on data collected
through a specified cut-off year for a variety of bases. Details of what is required for this
procedure are given in stubs.R.

a. Run your ridge regression procedure on each basis given below with the regression
parameter λ set equal to 10−6:

• {t}

• {t, t2}

• {t, t2, . . . , t20}

• {t, t2, . . . , t50}

• {t, t2, cos(2πt)}

• {t, t2, sin(2πt)}

• {t, t2, sin(2πt), cos(2πt)}

Use all data from the start of the recording period in 1959 through the end of 1974
as training data; use the data collected from the beginning of 1975 through the end
of the recording period in 1997 as a test set. For each basis below, record (and turn
in) the root mean squared error (RMSE) on the test set, where the RMSE of a model
f̂ on a set (x1, y1), . . . , (xm, ym) is given by

√

√

√

√

1

m

m
∑

i=1

(f̂(xi) − yi)2.

The RMSE on a test set is considered a reasonable measure of the accuracy of the
predictions.

Also make a plot showing actual CO2 concentrations as a function of the year, su-
perimposed with the concentrations (both training and test) predicted by the model
that you built for that basis. (You might wish to use colors to distinguish predictions
in the training set from predictions in the test set.)

b. Experiment with other choices of the parameter λ and/or other bases. Turn in the
results of these experiments.

c. Briefly discuss the results, including the following questions: Which model gives the
best predictions? How do the results make sense and fit your expections (and how do
they not)? If it were the beginning of 1975 and you only had data through that date,
which model would have seemed the “most reasonable” to have chosen for predicting
future CO2 concentrarions, and how accurate would that model actually have been?
How does working with this kind of time-series data differ from i.i.d. data?
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Problem R-3

The housing dataset was constructed from the 1990 US census. Here, the goal is to predict
the median price of a house in a given region based on demographic composition and the
state of the housing market in that region. Detailed descriptions of the variables used in
this and the other datasets are available on the main webpage for this assignment. After
following the instructions above, this dataset will be loaded into the variables house.train
and house.test.

The abalone dataset is concerned with predicting the age of abalone (a shellfish) from
physical measurements. The age of abalone can be determined by cutting the shell through
the cone, staining it, and counting the number of rings through a microscope — a tedious
and time-consuming task. Here, we instead attempt to predict the age using other mea-
surements, which are easier to obtain, such as sex, length, diameter, etc. After following
the instructions above, this dataset will be loaded into the variables abalone.train and
abalone.test.

a. On the housing dataset, run ridge regression on the provided training and testing
sets for a variety of values of the regularization parameter λ. Explore this parameter
using exponentially varying values such as . . . , 4, 2, 1, 0.5, 0.25, . . .. Plot test RMSE as
a function of log10(λ). Your goal, of course, is to minimize the test RMSE, and you
may need to do some exploring to find the “interesting” range of λ where this quantity
is smallest. (It is not necessary that your ridge() function work for very small values
of λ due to numerical limitations of R when solving linear equations. This may limit
the range of values you can search.)

b. Repeat the experiment in the last part for the abalone dataset.

c. Briefly discuss the results above, including the following questions: How sensitive
is the performance on the test set to the choice of λ for each of the datasets? In
other words, if we are slightly off in our choice of λ, how much will this affect test
performance? How do the plots you made for housing and abalone differ qualitatively,
or how are they similar? Speculate on possible explanations for these differences or
similarities, and what these mean in practice when choosing λ.

d. Using the housing test set, make a scatterplot comparing predicted median housing
prices to actual housing prices. In other words, make a scatterplot with one point
for each example in the test set where the x-coordinate is the actual median housing
price, and the y-coordinate is the price predicted by your ridge() procedure when
run on the housing dataset with the best choice of λ (as determined above). Briefly
discuss the quality of the fit as reflected on this scatterplot.

e. Manually explore the weight coefficients returned by your ridge() procedure when
run on the housing dataset with the best choice of λ (as determined above). Discuss
what can or cannot be inferred from these coefficients regarding the factors that do
or do not influence the median price of houses in a region.
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Problem R-4

Implement k-fold cross validation as a means for estimating test error using only the training
set. Your procedure should be called cross.val(), and should call ridge() k times in the
standard manner to obtain k estimates of the test error which are averaged and returned
by the function. Details of what is required are given in the stubs.R file.

a. Run 10-fold cross validation on the housing training set for the same set of λ values
you used in part (a) of the last problem. On a single plot, show the test RMSE as a
function of log10(λ) as estimated using cross validation. On the same plot, also show
your results from part (a) of the last problem so that the estimated and actual test
error numbers can be compared.

b. Repeat the experiment in the last part for the abalone dataset, comparing your results
to those obtained in part (b) of Problem R-3.

c. Discuss these plots. How good a job is cross validation doing as a method for esti-
mating test error? How good a job is cross validation doing as a method for selecting
the best choice of λ?

Problem R-5 (optional and for extra credit)

The computer-activity dataset records various performance measures from a Sun Sparcsta-
tion, such as the bytes read or written from system memory. The goal is to predict the
percentage of time that the cpu is running in user mode. After following the instructions
above, this dataset will be loaded into the variables comp.train and comp.test. Note
that we are not providing target values for the test set (all of these have been set to zero).
For this part of the assignment, we are asking you to use whatever techniques you wish to
come up with the most accurate predictions you can for the test set. After the deadline, we
will compare your submitted results to the actual test values, and we will post the results
on-line.

For this part of the homework, you can use some of the techniques explored on this
problem set. Or you can try different methods such as feature selection, lasso, nearest-
neighbors, decision trees, kernel regression, and more. You can use any of the functions built
in to R, provided you understand what they are doing. You are welcome and encouraged
to try out your own ideas. (But please do not use any methods that go against the spirit
of this assignment, such as searching for this dataset on the web.)

You should save and submit a file with your name (or a pseudonym), a one-sentence
description of the technique used, and a list of predictions on test examples. A function
called save.prediction.file() has been provided for this purpose (see helper.R for
details on how to use it). The saved file should be submitted via moodle. We will use the
information you provide to generate a public, on-line compilation of the results. If you wish
to remain anonymous, you do not need to provide your real name in the file you generate,
but can instead use a pseudonym of your choice.

Also, write and turn in a brief description of the approach you followed to generate your
predictions, including plots you might have used along the way (for instance, for choosing λ
if using ridge regression), as well as an explanation of why you tried what you did. Finally,
be sure to turn in any code that you wrote for this part.
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