How to Multiply

integers, matrices, and polynomials

COS 423
Spring 2007

slides by Kevin Wayne

Integer Multiplication

Algorithm Design

JON KLEINBERG - EVA TARDOS

Section 5.5

Complex Multiplication

Complex multiplication. (a + bi) (c + di) =x + yi.

Grade-school. x=ac-bd, y=bc + ad.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Integer Addition

Addition. Given two n-bit integers a and b, compute a + b.
Grade-school. ©(n) bit operations.

+

olo r
=
-
=
[
-
o
-

Remark. Grade-school addition algorithm is optimal.

Integer Multiplication Divide-and-Conquer Multiplication: Warmup

Multiplication. Given two n-bit integers a and b, compute a x b. To multiply two n-bit integers a and b:
6rade-school. ©(n?) bit operations. « Multiply four $n-bit integers, recursively.
« Add and shift to obtain result.
11010101
x01111101 a = 2"q 4+ a
11010101 b = 2"7:b + b
000000000 ab = (2-a;+ag) (2" b +by) = 2" aby + 2" (aby+agh) + agby
110101010
110101010
Ex. a = 10001101 b = 11100001
110101010 — N
110101010 G e
110101010
000000000 5
T(n) = 4T(n/2) + O(m) = T(n)=06(n")
0110100000000001

—_— ——
recursive calls add, shift

Q. Is grade-school multiplication algorithm optimal?

Recursion Tree Karatsuba Multiplication
. _ Ign I+lgn _ . it .
T(ﬂ)={ 0 if n=0 Ty= 3 n2* - n(z 1] = onPn To multiply two n-bit integers a and b:
@) ¢ @ ciEie i=0 2-1 « Add two 3n bit integers.
Ve « Multiply three $n-bit integers, recursively.
assume r is a power of 2 . Add, subtract, and shift to obtain result.
T (n) n
a = 2"%-a + q
b = 2"7-b + b,
=(n/2) T(n/2) Tin/2) H(niz) 4e/2) ab = 2"-ab, + 2" -(aby+aph,) + agh,
= 2"-ab + 2" ((a,+a,) (b +by) — aby —aghy) + agh,
o 2] o 06 ©
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 16(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 419n (1)

Karatsuba Multiplication

To multiply two n-bit integers a and b:
. Add two 3n bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

a = 2"%-a + q
b = 2'2.b 4 b,
ab = 2"-ab + 2" (ab,+agb) + aub,
= 2"-ab + 2" ((a,+a,) (b +by) — ayby —aghy) + agh,

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'%) bit operations.

T(n) = T(|n/2]) + T([n/2]) + T(1+[n/2]) + O@m) = T(n) = 0n*) = O@n"*)

add, subtract, shift

recursive calls

Integer Division

THE DESIGN AND
ANALYSIS OF
ALGORITHMS

Dexter C. Kozen

Section 30.3

Karatsuba: Recursion Tree

) Ign . (;)ngn .
=] ° LI Ty= 3 n @) = n| 22| = 3020
3T(n/2) + n otherwise 0 3-1
assume n is a power of 2
T (n) n
T(n/2) T(n/2) T(n/2) 3(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)
T(n / 2%) 3% (n / 2¥)
T(2) T(2) T (2) T (2) T(2) T(2) T(2) T(2) 3190 (1)

Integer Division

Integer division. Given two integer s and ¢ of at most n bits each,
compute the quotient and remainder: g=|s/t],r=smodz

Ex.
. s=1,000, t=110 = ¢=9,r=10.
« 5=4,905,648,605,986,590,685, t =100 = r=85.

Long division. ©(n?).

Q. Is grade-school long division algorithm optimal?

Newton's Method

Goal. Given a function f(x), find a value x* such that fix*) = 0.
sufficiently smooth
Newton's method.

= Start with initial guess x,.
« Compute a sequence of approximations: x, =x -

Convergence. No guarantees in general.

Integer Division: Newton's Method Example

Ex. t =17

. xo=°.1 f(x) = [—l

- x, =013 number of digits of accuracy - 2 * 2

. x, = 00417 doubles after each iteration B = 20 =B

. x, = 0,142847770

. x, = 0.14285714224218970

= %X = 0, 428571 4285714285449568544449737

X, = 0. 342057142057 14205714205714205714280809023113867839307631644158170

Ex. s/t = 123456/7
« s x, = 17636.57142857142824461934223586731072000

. Correct answer is either 17636 or 17637.

Integer Division: Newton's Method

Goal. Given two integer s and 1 compute g = |s / ¢].

Our approach: Newton's method.
= Approximately compute x =1/t using exact arithmetic.

fx

X = 2%

I
-
|
1= =
o

= After not too many iterations, quotient g is either |sx,] or [sx,].

Integer Division: Newton's Method

(g, r) = NewtonDivision(s, 1)

Choose x to be unique fractional power of 2 in interval (1/(2¢), 1/t]

repeat lg n times

X< 2x— tx?

set g=|sx]| or g=[sx]

set r=s—-qt

Analysis

L1. Iterates converge monotonically.
! 1
.

— < Xy =S X =X, ==

2t

Pf. [by induction on i]

« Base case: by construction, zl <x, s -
!

. . 1 1
« Inductive hypothesis: oy SMosw=osg s
X = 2x -t X,-z Xy = 2x;-t xlz
= x5Q2-rx) = Qx,—tx]=1/0)+1/t
= x,(2-1(1/1) = —t(x,-1/0*+1/t
= X A = 1/t

i
inductive hypothesis

(monotonic) (bounded)

Analysis

L3. Algorithm returns correct answer.

Pf.
« BylL2,afterk=[1glg(s/ 1] steps, we have: 1-n, < %
2

N

L2 choice of k

'
S.

« Thus, 0 = % -, < 1
t

\ \

x,=1/tbyLl rearranging expression above

+ This implies, g = |s/t] is either [sx,] or [sx].

- Note: k < Ign.

Analysis

L2. Iterates converge quadratically to 1/7: 1-tx; < iz
2

\

x, is approximates 1 /¢
to 2" significant bits of accuracy

Pf. [by induction on i]

« Base case: by construction, $< X, = l-1tx, < %
« Inductive hypothesis: 1-1x < L
2%
l-tx, = 1-tQx-tx})

(1-1x,)*

-

1 inductive hypothesis
i+l

22

A

Analysis

Theorem. Algorithm computes quotient and remainder in O(M(n)) time,
where M(n) is the time to multiply two n-bit integers.

Pf.
« The number of iterations is k=1g n.
« By L2, the algorithm returns the correct answer.
« Each iterate involves O(1) multiplications and additions.

I
~
I

fx)

X,

I ==
=

2x;

i+l i i

« Note: algorithm still works if we only keep track of 2/ significant
digits in iteration i.

= Overadll running time: M(1) + M(2) + M(4) + ... + M(2¥) = O(M(n)).

Analysis Integer Arithmetic

Theorem. Algorithm computes quotient and remainder in O(M(n)) time, Theorem. The following have the same asymptotic bit complexity.
where M(n) is the time to multiply two n-bit integers. « Multiplication.

« Squaring.
Corollary. Can do integer division in O(n'-3%%) bit operations. = Quotient.

= Remainder.

Dot Product

Dot product. Given two length n vectors a and b, compute ¢ =a-b.
Grade-school. ©(n) arithmetic operations. AN

Matrix Multiplication

a-b= Ea,b,

ALGORITHMS

a [7
b =[30 40 30]
‘ : : a- b = (70 x.30) + (.20 x .40) + (.10 x .30) = .32
] x‘

w \‘

Chapter 28.2

Remark. Grade-school dot product algorithm is optimal.

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Grade-school. ©(#n?) arithmetic operations. S
¢ = > a; bL/
G Cn oG, a, a, - a, b, b, - b,
Cy Cp 0 G, ay a4y a5, b2| bn . b1w
: i ' : = : . : x : : :
Co G c, a, a, a, b, b, - b,
59 (48 41 nN 2w 80 0 .50
31 36 25| = |30 .60 .10[x | .10 A4 .10
45 31 42 50 .10 .40 10 30 40
Q. Is grade-school matrix multiplication algorithm optimal?
26
Matrix Multiplication: Warmup
To multiply two n-by-n matrices A and B:
. Divide: partition A and B into 2n-by-3n blocks.
«» Conquer: multiply 8 pairs of $n-by-3n matrices, recursively.
= Combine: add appropriate products using 4 matrix additions.
Cll C12 _ A11 A12 < B, B, G = (A11XB11)+(A12X321)
C, G, 4 4 B, B, C, = (A11XB12)+(A12XB22)
Cy = (4yxBy) + (4 xBy)
Cp = (AyxBpy)+ (AZZXBZZ)

T(n)= 8T(n/2) +

[—
recursive calls

on?)

add, form submatrices

= T(n)=06(n")

Block Matrix Multiplication

CII
I1IS2 18 164 170
sS4 S 548 570
856 894 932 970
1208 1262 1316 1370
0
C, = AxBy + A,xBy = 4

yAvA

0 2
4 6

= X
8 10 11
12 13 14 15

1 16 17 2 3
x +
5 20 21 6 7

s 17 18 19
21 22 23
25 26 27
M 29 30 31

24 25 152 158
X =
28 29 504 526

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

[CII CIZ] = [All AIZ] x l:
CZI C22 AZ] A22

R+P-P
R+P
P+P,

E+R-PB-

« 7 multiplications.
. 18 =8+ 10 additions and subtractions.

Bll BIZ]
BZI BZZ

+R, 7 -

B Bo=

Ay % (B, = Byy)
(4 +4,) x By,
(A + 4p) x By,
Ay x(By - Byy)
(Aj + 4y) x (B + Byy)
(4 = 4yy) x (B + Byy)
(Ayy = 4) % (By; + Byp)

|

Fast Matrix Multiplication Fast Matrix Multiplication: Practice

To multiply two n-by-n matrices A and B: [Strassen 1969] Implementation issues.

. Divide: partition A and B into 2n-by-3n blocks. . Sparsity.

. Compute: 14 $n-by-3n matrices via 10 matrix additions. =« Caching effects.

. Conquer: multiply 7 pairs of $n-by-3n matrices, recursively. «» Numerical stability.

« Combine: 7 products into 4 terms using 8 matrix additions. « Odd matrix dimensions.

« Crossover to classical algorithm around n = 128.

Analysis.

« Assume n is a power of 2. Common misperception. “Strassen is only a theoretical curiosity.”

« T(n) = # arithmetic operations. = Apple reports 8x speedup on 64 Velocity Engine when n = 2,500.

= Range of instances where it's useful is a subject of controversy.
T(m)= 7T(n/2)+ ©®) = T(n)=0(n"2")=0n>")
recursive calls add, subtract
Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD,
30 31
Fast Matrix Multiplication: Theory Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications? ¢

A. Yes! [Strassen 1969] 0"y = 0(n ™)

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?

A. Impossible. [Hopcroft and Kerr 1971] 012 = 0(n ™)

Q. Two 3-by-3 matrices with 21 scalar multiplications? 20— B LA S o AR S S

A. Also imPOSSible' Q@ ey =0mn*") FIG. 1. (1) is the best exponent announced by time r.

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

« Two 20-by-20 matrices with 4,460 scalar multiplications. 0(n>™) Best known. O(n2%) [Coppersmith-Winograd 1987]

» Two 48-by-48 matrices with 47,217 scalar multiplications. 0™

= Ayear later. o0n*) Conjecture. O(n?*) for any ¢ >0.

« December, 1979. 0@ ¥

« January, 1980. On 2521501 Caveat. Theoretical improvements to Strassen are progressively

less practical.

