How to Multiply

integers, matrices, and polynomials

COs 423
Spring 2007

slides by Kevin Wayne

Fourier Analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any periodic function

can be expressed as the sum of a series of sinusoids. \Sufﬂdemly <mooth
2 & sinkt
o = — N=100
mi k

Convolution and FFT

ALGORITHMS

Chapter 30

Euler's Identity

Sinusoids. Sum of sines and cosines.

e =cosx +isinx

Euler's identity

Sinusoids. Sum of complex exponentials.

Time Domain vs. Frequency Domain

Signal. [touch tone button 1] y(®) = }sin@z - 697 1) + § sin(27 - 1209 1)

Time domain. 1
05

sound
pressure

4

0.5

-1

0 0.005 0.01 0.015

time (seconds)

Frequency domain.

0.5 . .

amplitude

400 600 800 1000 1200 1400 1600
frequency (Hz)

Reference: Cleve Moler, Numerical Computing with MATLAB

Fast Fourier Transform

FFT. Fast way o convert between time-domain and frequency-domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.
b\

we take this approach

“ If you speed up any nontrivial algorithm by a factor of a
million or so the world will beat a path towards finding

useful applications for it. 7 — Numerical Recipes

Time Domain vs. Frequency Domain

Signal. [recording, 8192 samples per second]

1 T T
J . i ‘ﬁ
0'57‘“‘ H \ ‘M ‘ﬂ\ \ﬂ“ M p “ “ H H‘ \‘\ “\ H i A ‘\“ \“‘ I “\ U “ \‘ Mu “
L \“HH‘\H“ M M\W“HM‘ | m‘mm MV
\wwwwmu‘\‘w"ww\c““‘mJ‘w\‘www“
-0 I h \ iy “ |) | I } "
_8.38 0.385 0.39 0.395 04 0.405 0.41 0.415 0.42
Magnitude of discrete Fourier transform.
300 T (T T T T T
200 ‘ b
100 ‘L
Mm"'"m . . N Mr .
600 800 1000 1200 1400 1600

Reference: Cleve Moler, Numerical Computing with MATLAB

Fast Fourier Transform: Applications

Applications.

« Optics, acoustics, quantum physics, telecommunications, radar,
control systems, signal processing, speech recognition, data
compression, image processing, seismology, mass spectrometry...

= Digital media. [DVD, JPEG, MP3, H.264]

« Medical diagnostics. [MRI, CT, PET scans, ultrasound]

« Numerical solutions to Poisson's equation.
« Shor's quantum factoring algorithm.

“The FFT is one of the truly great computational

developments of [the 20th] century. It has changed the

face of science and engineering so much that it is not an

exaggeration to say that life as we know it would be very

different without the FFT. ”

— Charles van Loan

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
Runge-Konig (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm, x-ray crystallography.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and
tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

A Modest PhD Dissertation Title

“ New Proof of the Theorem That Every Algebraic Rational
Integral Function In One Variable can be Resolved into

Real Factors of the First or the Second Degree.
— PhD dissertation, 1799 the University of Helmstedt

AY7831976K1

ZEHN DEUTSCHE MARK

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

A(X) = ay +ax +ax* ++a, x"7

B(x)= by +bx+byx* +---+ b, x""
Add. O(n) arithmetic operations.

A(x) + B(x) = (ay+by) + (a,+b)x + - + (a, +b,)x""

Evaluate. O(n) using Horner's method.

A(x) = ay + (x(a; + x(a, + - + x(a,, + x(a,_)) =)

Multiply (convolve). O(n?) using brute force.

w2 i
A(x) x B(x) = Y ¢ x', wherec,= Y a;b,_;
i=0

j=0

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has exactly n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its
evaluation at n distinct values of x.

=

¥=AG;)

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

A(x): (Xg, Yo)s wves (Xgs Yooy)
B(x): (X9, Z9)s oes (X, 05 Z5y)

Add. O(n) arithmetic operations.

AX)+B(x): (Xg, Yo+20)s s (K> Yoot +Z0sy)
Multiply (convolve). O(n), but need 2n-1 points.

A(x) x B(x): (X Yo X Z0)s s (Kapts Yoot X Zans)

Evaluate. O(n?) using Lagrange's formula.

n-1 H (x= xi)
AW =3y L ——
* k;()yk H (xk -)Cj)

J=k

Converting Between Two Representations: Brute Force

Coefficient = point-value. Given a polynomial a, + a,x + ... + a, ;x",
evaluate it at n distinct points x,, ..., x,

n-1+

Yo 1 x x5 - X aq
2 =il
n 1 x x ox a
- 2 n-1
» =1 x, x; Xy a,
2 n-1
Yna I X, X o %0 n1

Running time. O(n?) for matrix-vector multiply (or n Horner's).

Converting Between Two Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

coefficient Oo(n?) O(n)
point-value O(n) o(n?)

Goal. Efficient conversion between two representations = all ops fast.

a()’ a1s weey an-l (xOs }’0), LEXX} (x,,_lv yn_l)

<

coefficient representation point-value representation

Converting Between Two Representations: Brute Force

Point-value = coefficient. Given n distinct points x,, ..., x, , and values
Yor - » Yo1. Tind unique polynomial a, + a,x + ... + a, ; x*!, that has given
values at given points.

2 n-1

Yo I x x 0 a4y
2 =il

n 1 x x X a
- 2 n-1

» =1 x, x; Xy a,
2 n-1

Yna 1 x, X, X1 n1

Vandermonde matrix is invertible iff x; distinct

Running time. O(n?) for Gaussian elimination.

N

or O(n*¥") via fast matrix multiplication

Divide-and-Conquer

Decimation in frequency. Break up polynomial into low and high powers.
. Ax) = Gy + ax + ax? + a3 + axt + ax’ + agx® + ax’.

« AL (D) = ay+ ax + apx? + axd.
v A) = @y +asx + agx® + a;x’.
- AR) = A () + X A,

low

Decimation in time. Break polynomial up into even and odd powers.
« A = agt+ax + apx? + a3+ axt + axd + agpd + ax.

= AL, (X) = ayg+ ayx + ax? + agx’.
o A = a; + ax + agx? + ax’.
- A) =A,,, (07 +x A 3.

even

Coefficient to Point-Value Representation: Intuition

Coefficient = point-value. Given a polynomial a, + a;x + ... + a,; x",

evaluate it at n distinct points x,, ..

o X,

we get to choose which ones!

Divide. Break polynomial up into even and odd powers.
« A = agt+ax + apx? + axd + axt + axd + apd + ax.

= AL (X) = ay+ ayx + ax? + agx’.
« A = a; + ax + agx? + ax’.
- A) =A,,,(03) +x A 3.
= A(x) = A, (3 - x A (7).

Intuition. Choose four complex points to be +1, +i.

s A(D) = A, (D) + 1A,
« A=A, (D) -1TA ,(D.
» A(D) =A,, D) + P A D).
= A(-D) = A, D) =T A D).

Can evaluate polynomial of degree < n
at 4 points by evaluating two polynomials
of degree = 3n at 2 points.

Coefficient to Point-Value Representation: Intuition

Coefficient = point-value. Given a polynomial a, + a;x + ... + a,; x",
evaluate it at n distinct points x;, ..., x, .

we get to choose which ones!

Divide. Break polynomial up into even and odd powers.
« A = agt+ax + apx? + axd + axt + axd + agps + ax.
o« AL (X) = ay+ ayx + ax? + agx’.
» A = a; + ax + agx? + ax’.
- A) =A4,,,(03) +x A 3.
= A(x) = A, (3 - x A (7).

Intuition. Choose two points to be +1.
« A(D)=A,, 1D +1A 1.

« A=A, (D -1A (D). Can evaluate polynomial of degree < n
at 2 points by evaluating two polynomials
of degree =< %n at 1 point.

Discrete Fourier Transform

Coefficient = point-value. Given a polynomial a, + a\x + ... + a,; x",
evaluate it at n distinct points x;, ..., x, ;.

Key idea. Choose x, = w* where w is principal n* root of unity.

Yo (1 1 1 1 1] ap
" 1 o o? o? o' o
}’z 1 o o o o @D &
[i R o° @ . ¥ &
Vot 1 mn—l wZ(n—l) m}(n—l) . m(n—l)(n—l) a,,
DFT Fourier matrix F,

Roots of Unity Fast Fourier Transform

Def. Ann' root of unity is a complex number x such that x* = 1. Goal. Evaluate a degree n-1 polynomial A(x) =g, + ... + a,, x*! at its
n roots of unity: 0, o', ..., 0.
Fact. The n' roots of unity are: °, o', ..., o"! where m = e 2%i/7,

Pf. (wkyr = (e2nikinyn = (emi)2% = (-1)2% = [, Divide. Break up polynomial into even and odd powers.
« Aua(X) = aptax+ax’+ . +a,,x"

Fact. The 3n™ roots of unity are: v0, vi, ..., v/*! where v = w2=¢4ti/n, o« Ay (X) = a +ax+ax+ .. +a, x"L
- A) =A,,,(0) +x A3,

Conquer. Evaluate A,,,,(x) and A ,(x) at the zn*
o! roots of unity: v0, vi, ..., v/,
k= (k)2
o?=v0=1 Combine. vi= (@)
=AY =A,, 00+ 04,0, 0sk<nl2

« Ak iy = A, (VK — 0k A, (vh), 0<k<n/2

o’ ’? /

vk = (@k+¥n)2 Wkt B = ok

®

FFT Algorithm FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the n' roots of unity in O(n log n) steps. \

assumes n is a power of 2
fft(n, ag,a;,..,a,1) {

if (n == 1) return a,
Running time. T(m) = 2T(n/2) + O(n) = T(n) = B(n logn)

(€p,€1,./€4/2-1) < FFT(n/2, a;,a,,a;,..,3,,)
(dy,dy,..,dy/p-1) < FFT(n/2, a;,az,as,..,3,;)
for k = 0 to n/2 - 1 {

@k <« e2mik/n

Y < e + oF 4

Yitn/z < € — OF dy
} O(n log n)
return (¥o,¥1/-r¥a-1) Qg5 Gy -5 Gy : (@°, Yg)s wer (@, 3,1)

A

coefficient ?2?7?
representation representation

point-value

Recursion Tree

perfect shuffle

000 100 010 110 001 101 011 111

bit-reversed order

Inverse FFT

Fourier Matrix Decomposition

Inverse Discrete Fourier Transform

Point-value = coefficient. Given n distinct points x,, ..., x, , and values
Yo - Yo1, find unique polynomial a, + a,x + ... + a, ; x*!, that has given
values at given points.

!

Inverse DFT Fourier matrix inverse (F,) !

Inverse DFT

Claim. Inverse of Fourier matrix F, is given by following formula.

(1 1 1 1 1
1 o 0 o? o P
. s o WS . 2D
(R R e w2 . 3D
1 (D_("_l) (D—Z(n—l) w—3(n—l) w—(n—l)(n—l)

L i i
7, F, is unitary

Consequence. To compute inverse FFT, apply same algorithm but use
o' = ¢-27i/n gs principal n” root of unity (and divide by n).

Inverse FFT: Algorithm

ifft(n, ag,a;,..,a, ;) {
if (n == 1) return a,

(ep,€1/.-1€n/2-1) < FFT(n/2, a;,a,,a;,..,3,,)
(dg,dy,..,dy/5-1) < FFT(n/2, a;,a;,as,..,3,)

for k = 0 to n/2 - 1 {
mk‘_.-uuh

Yienz < (& + 0 d) [&
Yienz < (& - 0 &) [/ n

return (¥o,¥1,-s¥a-1)

Inverse FFT: Proof of Correctness

Claim. F,and G, are inverses.
Pf.

n-1 . - n-1 N 1 ifk=k
(= LG < L {1

nj=o nj=0 \

summation lemma

0 otherwise

Summation lemma. Let w be a principal n root of unity. Then

> o

Jj=0

SRV {n if k=0 mod n

0 otherwise

Pf.
« If kis amultiple of n then w*=1 = series sums to n.

« Each n root of unity w* is a root of x*-1=(x-1) (1 +x+x2+ ... +x"1).
« if of=1wehave: 1+ of+ 0@+ .. + kD=0 = series sums to 0. =

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial

given values at each of the n roots of unity in O(n log n) steps.
\

assumes n is a power of 2

O(n log n)

0 -1
Gos Gy -+ 5 g (@7, Yo)s «oes (@"7, y,)

O(n log n)

A

coefficient point-value

representation representation

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.
V\

pad with 0s to make n a power of 2

coefficient
representation coefficient
I'L’[)ri}\t’ll’(l/il)l?
ay, Gy, ..., 4, e .
02 C1o 0000 Copp
by brses b, —
2 FFTs O(n log n) 1inverse FFT | O(nlogn)
A@°), ..., A(@>™) point-value multiplication
. ot > C(0°), ..., C(@™™)
B(w"), ..., Blw™") O(n)

FFT in Practice

Fastest Fourier transform in the West. [Frigo and Johnson]

= Optimized C library.

« Features: DFT, DCT, real, complex, any size, any dimension.
= Won Wilkinson Prize '99.

« Portable, competitive with vendor-tuned code.

Implementation details.

« Instead of executing predetermined algorithm, it evaluates your
hardware and uses a special-purpose compiler to generate an
optimized algorithm catered to "shape" of the problem.

« Core algorithm is nonrecursive version of Cooley-Tukey.

« O(nlog n), even for prime sizes.

FFTW

http://www. £ftw.org

FFT in Practice ?

TINAR Pogareeg Aescurea Lo Scagre 1YY deve woure -
& i — a MY g— S | ro— > o — —

Bt it L

s e - - e w——ra. — -

April 24, 2007

Integer Arithmetic

Integer Multiplication, Redux Integer Multiplication, Redux

Integer multiplication. Given two n bit integers a =a,, ... a,a,and Integer multiplication. Given two n bit integers a =a,, ... a,a,and
b=b,,...bb,, compute their product ab. b=b,,...bb,, compute their product ab.

Convolution algorithm.

. Form two polynomials. A(x)=ay+a;x+ a2x2 ot an—lxn_I "the fastest bignum library on the planet"
« Note: a =A(2), b = B(2). B(x)=by+bx+byx*+---+b,_x"" 7

« Compute C(x) = A(x) B(x). Practice. [6GNU Multiple Precision Arithmetic Library]

« Evaluate C(2) = ab. Tt uses brute force, Karatsuba, and FFT, depending on the size of n.

« Running time: O(nlog n) complex arithmetic operations.

Theory. [Schonhage-Strassen 1971] O(n log n log log n) bit operations. GMP

«Arithmetic without limitations»

http://gmplib.org

Integer Arithmetic Factoring

Fundamental open question. What is complexity of arithmetic? Factoring. Given an n-bit integer, find its prime factorization.

67_1 = =
—— 267-1 = 147573952589676412927 = 193707721 x 761838257287

addition 0(7[) Q(n) a disproof of Mersenne's conjecture that 2°7 - 1 is prime
multiplication O(n log n log log n) Q(n)
division O(n log n log log n) Q(n)

740375634795617128280467960974295731425931888892312890849
362326389727650340282662768919964196251178439958943305021
275853701189680982867331732731089309005525051168770632990
72396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

Factoring and RSA

Primality. Given an n-bit integer, is it prime?
Factoring. Given an n-bit integer, find its prime factorization.

Significance. Efficient primality testing = can implement RSA.
Significance. Efficient factoring = can break RSA.

Theorem. Poly-time algorithm for primality testing.

&

P 4 @ PRIME

N=PQ
£D = | poD (P-Da-D
C = M° MODN
M= C° MNODN

17’5 JUST AN ALGORITHM

Shor's Factoring Algorithm

Period finding.

20 1 2 4 8 16 32 64 128
2 imod 15 i 2 4 8 i 2 4 8
Zadils | “ perid=4
L2 4 s 1 ou o1 2
™~ period = 6

Theorem. [Euler] Let p and ¢ be prime, and let n=p g. Then, the
following sequence repeats with a period divisible by (p-1) (¢-1):

xmod n, x2mod n, x3mod n, x*mod n, ...

Consequence. If we can learn something about the period of the

sequence, we can learn something about the divisors of (p-1) (¢-1).
V\

use random values of x to get divisors of (p-1) (¢-1),
from this, can get the divisors of n=pgq

Shor's Algorithm

Shor's algorithm. Can factor an n-bit integer in O(n?) time on a

quantum computer. N
algorithm uses quantum QFT !

Ramification. At least one of the following is wrong:
« RSA is secure.
» Textbook quantum mechanics.
« Extended Church-Turing thesis.

Peter Shor

