COS 423
 Notes on Fast Versions of the Preflow Push Max-Flow Algorithm

Spring 2007

1. FIFO(Round-Robin) Version

In this version of the algorithm, we maintain a queue of all the active vertices (those with positive excess). We pop the first vertex off of the queue and discharge it by applying pushing and relabeling steps to it until its excess is reduced to zero. If a push makes a vertex active, we inject it into the back of the queue.

The running time of this method is
[image: image1.wmf]O()

nm

plus
[image: image2.wmf]O(1)

per nonsaturating push, since the time for queue operations is
[image: image3.wmf]O(1)

per push. (The time for the
[image: image4.wmf]2

O()

n

 relabeling is
[image: image5.wmf]O(),

nm

 the number of saturating pushes and the time they take is
[image: image6.wmf]O(),

nm

 the time per nonsaturating push is
[image: image7.wmf]O(1),

 and the time spent finding edges on which to do pushes is
[image: image8.wmf]O()

nm

plus
[image: image9.wmf]O(1)

per nonsaturating push.) We shall bound the number of nonsaturating pushes, and hence the total running time, by
[image: image10.wmf]3

O().

n

 To do this, we define passes through the queue as follows. Pass one consists of the discharges done on vertices initially on the queue (once the arcs out of
[image: image11.wmf]s

 are saturated). Pass
[image: image12.wmf]1

k

+

consists of the discharges done on vertices added to the queue during pass
[image: image13.wmf].

k

 During each pass, there is at most one discharge per vertex, and thus at most one nonsaturating push per vertex, since such a push reduces the vertex excess to zero. We shall derive an
[image: image14.wmf]2

O()

n

bound on the number of passes, giving the desired
[image: image15.wmf]3

O()

n

bound on the number of nonsaturating pushes. Let
[image: image16.wmf]F

 be
[image: image17.wmf]max{()()0}.

dvev

>

 Initially
[image: image18.wmf]F

 is zero, and
[image: image19.wmf]F

 is always non-negative. A pass that does no relabeling reduces
[image: image20.wmf]F

 by one, since all excess moves to a vertex of smaller label.

More generally, a pass that increases labels by a total of
[image: image21.wmf]k

 increases
[image: image22.wmf]F

 by at most
[image: image23.wmf]1.

k

-

 If we charge one for a pass, the amortized cost of a pass is then at most the total increase in distance labels it causes. Since the total increase in distance labels over the entire algorithm is
[image: image24.wmf]2

O(),

n

 the total number of passes is
[image: image25.wmf]2

O().

n

2. Big-Excess Version(assuming integer arc capacities)

In this version of the algorithm, we maintain a parameter
[image: image26.wmf]V

that is an upper bound on the maximum excess. Initially
[image: image27.wmf]V

 is the initial maximum excess, equal to the maximum of the capacities of the arcs leaving the source, say U. Pushes are only done on vertices with excess exceeding
[image: image28.wmf]/2.

V

 We call such vertices big. Once there are no big vertices,
[image: image29.wmf]V

 is divided by 2 and rounded down to the nearest integer, and pushing continues. Once
[image: image30.wmf]V

 is less than one, all excesses must be zero, since the algorithm maintains flow integrality. In order to guarantee that the algorithm always makes forward progress, we must modify the pushing step so that it never creates a vertex excess exceeding
[image: image31.wmf].

V

 In particular, when pushing from
[image: image32.wmf]v

 to
[image: image33.wmf],

w

 the amount of flow moved is
[image: image34.wmf]min{(),

ev

 EMBED Equation.DSMT4 [image: image35.wmf]_(,),

rescapvw

 EMBED Equation.DSMT4 [image: image36.wmf]()}.

ew

-

V

We still need a way to select big vertices for processing. A good method is to select a big vertex of minimum label. With this method, any nonsaturating push moves at least
[image: image37.wmf]/2

V

 units of flow. Consider the potential function
[image: image38.wmf]
[image: image39.wmf]F

 =
[image: image40.wmf]sum{()()/(2)}.

evdv

V

 This potential is initially zero, always non-negative, and at most
[image: image41.wmf]2

4.

n

 Any push reduces the potential, a nonsaturating push reduces it by at least one, and the only increases in potential are due to relabelings, which cause a total increase of
[image: image42.wmf]2

O(),

n

 and changes in
[image: image43.wmf],

V

 each of which can cause an increase in
[image: image44.wmf]F

 by up to
[image: image45.wmf]2

2

n

(from
[image: image46.wmf]2

2

n

to
[image: image47.wmf]2

4).

n

 Thus the total number of nonsaturating pushes is
[image: image48.wmf]2

O(logU),

n

and the total running time is
[image: image49.wmf]2

O(logU),

nnm

+

 assuming that the overhead to select big vertices for processing is not too large.

Exercise: Describe a way to implement big vertex selection within the claimed time bound.

_1237615624.unknown

_1237616730.unknown

_1237617165.unknown

_1237620588.unknown

_1237620758.unknown

_1237620759.unknown

_1237620645.unknown

_1237620756.unknown

_1237620757.unknown

_1237620719.unknown

_1237620605.unknown

_1237620516.unknown

_1237620552.unknown

_1237617249.unknown

_1237617266.unknown

_1237617364.unknown

_1237617227.unknown

_1237616935.unknown

_1237617042.unknown

_1237617089.unknown

_1237616945.unknown

_1237616866.unknown

_1237616819.unknown

_1237616820.unknown

_1237615773.unknown

_1237616579.unknown

_1237616710.unknown

_1237616572.unknown

_1237615703.unknown

_1237615729.unknown

_1237615655.unknown

_1237615386.unknown

_1237615492.unknown

_1237615503.unknown

_1237615520.unknown

_1237615409.unknown

_1237615420.unknown

_1237615350.unknown

