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     Collaboration allowed
1. (Recoloring in red-black trees) I argued in class that the amortized number of node recolorings in red-black trees is 
[image: image1.wmf]O(1)

per insertion or deletion.  Your goal in this problem is to make the constant factor (or factors) in the 
[image: image2.wmf]O(1)

as small as possible.  To be more precise, suppose one begins with an initially empty red-black tree and does a sequence of 
[image: image3.wmf]k

 insertions and 
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 intermixed deletions in the tree, using the standard rebalancing algorithms discussed in class and in the text.  Derive a bound of the form 
[image: image5.wmf]akbd
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on the total number of node recolorings, with 
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 and 
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 as small as possible.  (More, precisely, minimize
[image: image8.wmf]max{,};
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 once this is minimized, minimize 
[image: image9.wmf]min{,}.)
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 The initial coloring(red) of a newly inserted node does not count, only recolorings.  This is an exercise in understanding how the details of a simple amortized analysis work.  See problem 17.4 on page 428 of the text.  I suggest you try the improved potential function I mentioned in class, of 3/2 for a black node with two red children and ½ for a black node with two black children.  Maybe you can do even better.  Maybe not.  Extra credit: give an infinite family of examples that give good lower bounds for 
[image: image10.wmf]max{,}
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 and 
[image: image11.wmf]min{,}.
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  Matching upper and lower bounds would be splendid!

2. An interval is denoted by a pair of numbers 
[image: image12.wmf](,)
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 with 
[image: image13.wmf].

xy
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  The interval contains all numbers between 
[image: image14.wmf]x

 and 
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y

 inclusive.  Given a collection of intervals, the density of a value z is the number of intervals that contain z. Design a data structure that supports the following  three operations on a set of n intervals, each in 
[image: image16.wmf]O(log)

n

time insert a new interval, delete a given interval, determine the density of a given value.  You can assume that the set of intervals is initially empty; your time bounds can be worst-case, randomized, or amortized.  See Problem 14.1, page 496 of the text (which is NOT exactly the same problem, but related).

3. Describe an algorithm that takes a given array 
[image: image17.wmf]A

 of 
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 numbers and rearranges them into heap order 
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 in 
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time.  (Note that sequential insertion can take 
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time; this is not the solution.)

4. (See exercise 20.4-1, page 496)  Show that a single decrease key operation on a Fibonacci heap can take 
[image: image22.wmf]()
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 time in the worst case., by giving a sequence of operations that begin with an empty heap and build a heap of 
[image: image23.wmf]n

 nodes consisting of a single path.

5. (Linear time for a special case of disjoint set union) Consider an intermixed sequence of unite and find operations implemented using path compression and union by rank.  Let 
[image: image24.wmf]n

 be the total number of elements and m the total number of operations.  Suppose every find is on a set containing at least 
[image: image25.wmf]log

n

 elements (at the time the find is done).  Prove that the total time of all the operations is 
[image: image26.wmf]O().

nm

+


_1233381343.unknown

_1233382307.unknown

_1233386453.unknown

_1233386580.unknown

_1233386684.unknown

_1233386685.unknown

_1233386608.unknown

_1233386527.unknown

_1233382308.unknown

_1233381947.unknown

_1233382132.unknown

_1233382243.unknown

_1233382244.unknown

_1233382172.unknown

_1233382242.unknown

_1233381948.unknown

_1233381831.unknown

_1233381852.unknown

_1233381765.unknown

_1233381082.unknown

_1233381117.unknown

_1233381204.unknown

_1233381095.unknown

_1233381049.unknown

_1233381066.unknown

_1233381012.unknown

