COS 423

Problem Set No. 2

Spring 2007

 Due: Monday, March 5

 Collaboration allowed
1. (Recoloring in red-black trees) I argued in class that the amortized number of node recolorings in red-black trees is
[image: image1.wmf]O(1)

per insertion or deletion. Your goal in this problem is to make the constant factor (or factors) in the
[image: image2.wmf]O(1)

as small as possible. To be more precise, suppose one begins with an initially empty red-black tree and does a sequence of
[image: image3.wmf]k

 insertions and
[image: image4.wmf]d

 intermixed deletions in the tree, using the standard rebalancing algorithms discussed in class and in the text. Derive a bound of the form
[image: image5.wmf]akbd

+

on the total number of node recolorings, with
[image: image6.wmf]a

 and
[image: image7.wmf]b

 as small as possible. (More, precisely, minimize
[image: image8.wmf]max{,};

ab

 once this is minimized, minimize
[image: image9.wmf]min{,}.)

ab

 The initial coloring(red) of a newly inserted node does not count, only recolorings. This is an exercise in understanding how the details of a simple amortized analysis work. See problem 17.4 on page 428 of the text. I suggest you try the improved potential function I mentioned in class, of 3/2 for a black node with two red children and ½ for a black node with two black children. Maybe you can do even better. Maybe not. Extra credit: give an infinite family of examples that give good lower bounds for
[image: image10.wmf]max{,}

ab

 and
[image: image11.wmf]min{,}.

ab

 Matching upper and lower bounds would be splendid!

2. An interval is denoted by a pair of numbers
[image: image12.wmf](,)

xy

 with
[image: image13.wmf].

xy

£

 The interval contains all numbers between
[image: image14.wmf]x

 and
[image: image15.wmf],

y

 inclusive. Given a collection of intervals, the density of a value z is the number of intervals that contain z. Design a data structure that supports the following three operations on a set of n intervals, each in
[image: image16.wmf]O(log)

n

time insert a new interval, delete a given interval, determine the density of a given value. You can assume that the set of intervals is initially empty; your time bounds can be worst-case, randomized, or amortized. See Problem 14.1, page 496 of the text (which is NOT exactly the same problem, but related).

3. Describe an algorithm that takes a given array
[image: image17.wmf]A

 of
[image: image18.wmf]n

 numbers and rearranges them into heap order
[image: image19.wmf](()min{(2),(21)})

AiAiAi

£+

 in
[image: image20.wmf]O()

n

time. (Note that sequential insertion can take
[image: image21.wmf](log)

nn

W

time; this is not the solution.)

4. (See exercise 20.4-1, page 496) Show that a single decrease key operation on a Fibonacci heap can take
[image: image22.wmf]()

n

W

 time in the worst case., by giving a sequence of operations that begin with an empty heap and build a heap of
[image: image23.wmf]n

 nodes consisting of a single path.

5. (Linear time for a special case of disjoint set union) Consider an intermixed sequence of unite and find operations implemented using path compression and union by rank. Let
[image: image24.wmf]n

 be the total number of elements and m the total number of operations. Suppose every find is on a set containing at least
[image: image25.wmf]log

n

 elements (at the time the find is done). Prove that the total time of all the operations is
[image: image26.wmf]O().

nm

+

_1233381343.unknown

_1233382307.unknown

_1233386453.unknown

_1233386580.unknown

_1233386684.unknown

_1233386685.unknown

_1233386608.unknown

_1233386527.unknown

_1233382308.unknown

_1233381947.unknown

_1233382132.unknown

_1233382243.unknown

_1233382244.unknown

_1233382172.unknown

_1233382242.unknown

_1233381948.unknown

_1233381831.unknown

_1233381852.unknown

_1233381765.unknown

_1233381082.unknown

_1233381117.unknown

_1233381204.unknown

_1233381095.unknown

_1233381049.unknown

_1233381066.unknown

_1233381012.unknown

