Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size \Rightarrow effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to reasonable size, even for relatively large instances.

Enumerating subsets: natural binary encoding

Given n items, enumerate all 2^n subsets.

- count in binary from 0 to $2^n - 1$.
- bit i represents item i.
- if 0, in subset; if 1, not in subset

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Enumerating subsets: natural binary encoding

Given \(n \) items, enumerate all \(2^n \) subsets.
- count in binary from 0 to \(2^n - 1 \).
- bit \(i \) represents item \(i \).
- if 0, in subset; if 1, not in subset.

Note: bitflicking simpler in assembly language.

```java
long N = 1 << n;
for (long i = 0; i < N; i++)
{
   for (int bit = 0; bit < n; bit++)
   {
      if (((i >> bit) & 1) == 1)
         System.out.print(bit + " ");
   }
   System.out.println();
}
```

Samuel Beckett

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>empty</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>2 1</td>
<td>enter 2</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>2</td>
<td>exit 1</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3 2</td>
<td>enter 3</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3 1</td>
<td>exit 2</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>3</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>4 3</td>
<td>enter 4</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>enter 2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>4 2</td>
<td>exit 3</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>4 1</td>
<td>exit 2</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>4</td>
<td>exit 1</td>
</tr>
</tbody>
</table>

Beckett: Java implementation

```java
public static void moves(int n, boolean enter)
{
   if (n == 0) return;
   moves(n-1, true);
   if (enter) System.out.println("enter " + n);
   else System.out.println("exit " + n);
   moves(n-1, false);
}
```

Binary reflected Gray code. The n-bit code is:
- the (n-1) bit code with a 0 prepended to each word, followed by
- the (n-1) bit code in reverse order, with a 1 prepended to each word.

<table>
<thead>
<tr>
<th>2-bit code</th>
<th>4-bit code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>1</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 0</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>1</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>0</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>0 1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>1</td>
<td>0 1 0 0</td>
</tr>
</tbody>
</table>

% java Beckett 4
enter 1
enter 2
exit 1
enter 3
enter 1
exit 2
exit 1
enter 4
enter 1
exit 2
exit 1
exit 3
exit 1
exit 2
exit 1
stage directions
for 3-actor play
moves(3, true)
reverse stage directions
for 3-actor play
moves(3, false)
More Applications of Gray Codes

- 3-bit rotary encoder
- 8-bit rotary encoder
- Chinese ring puzzle
- Towers of Hanoi

Scheduling

Scheduling (set partitioning). Given \(n \) jobs of varying length, divide among two machines to minimize the time the last job finishes. Or, equivalently, difference between finish times.

<table>
<thead>
<tr>
<th>Job</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>1.73</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Remark. NP-hard.

Scheduling (using Gray Code)

Beckett's stage directions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.37</td>
<td>1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>2</td>
<td>4.55</td>
<td>-1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>3</td>
<td>1.09</td>
<td>-1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>1</td>
<td>3.91</td>
<td>1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>3</td>
<td>-0.09</td>
<td>1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>1</td>
<td>-2.91</td>
<td>-1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>-1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>1</td>
<td>3.38</td>
<td>1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>4</td>
<td>-1.08</td>
<td>1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>1</td>
<td>-3.91</td>
<td>-1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>2</td>
<td>-7.37</td>
<td>-1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>3</td>
<td>-4.55</td>
<td>-1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>3</td>
<td>-0.55</td>
<td>-1.41</td>
<td>1.73</td>
<td>-2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>1</td>
<td>-3.38</td>
<td>-1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>-1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>-2.23</td>
</tr>
<tr>
<td>1</td>
<td>2.91</td>
<td>1.41</td>
<td>1.73</td>
<td>2.00</td>
<td>-2.23</td>
</tr>
</tbody>
</table>

Scheduling: Java implementation

```java
public static void moves(int n, double[] a, double[] b) {
    if (n == 0) return;
    moves(n-1, a, b);
    a[n] = -a[n];
    a[0] += 2*a[n];
    if (Math.abs(a[0]) < Math.abs(b[0])) {
        for (int i = 0; i < a.length; i++)
            b[i] = a[i];
        moves(n-1, a, b);
    }
}
```

```java
int[] a = { 7.37, 1.41, 1.73, 2.00, 2.23 };
int[] b = { 7.37, 1.41, 1.73, 2.00, 2.23 };
```
Exploiting Symmetry

- Exploit symmetry.
 - Half of schedules are redundant.
 - Fix job n on machine one \Rightarrow twice as fast.

Space-Time Tradeoff

- Space-time tradeoff.
 - Enumerate all subsets of first n/2 jobs; sort by gap.
 - Enumerate all subsets of last n/2 jobs; for each subset, binary search to find for best matching subset among first n/2 jobs.

<table>
<thead>
<tr>
<th>gap (subset)</th>
<th>-5.14 (empty)</th>
<th>-2.32 (1)</th>
<th>-1.68 (2)</th>
<th>-1.14 (3)</th>
<th>1.14 (1 2)</th>
<th>1.68 (1 3)</th>
<th>2.32 (2 3)</th>
<th>5.14 (1 2 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>best match</td>
<td>-5.58 (empty)</td>
<td>-1.12 (4)</td>
<td>0.42 (5)</td>
<td>-4.08 (4)</td>
<td>4.48 (4 5)</td>
<td>-0.42 (4 6)</td>
<td>1.12 (1 6)</td>
<td>5.58 (1 5 6)</td>
</tr>
<tr>
<td>gap (subset)</td>
<td>-5.24 (1 2 3)</td>
<td>0.00 (2 4)</td>
<td>-0.72 (1 2 4)</td>
<td>0.26 (1 2 3 4)</td>
<td>-0.26 (2 4 6)</td>
<td>0.72 (1 5 6)</td>
<td>0.00 (1 2 3)</td>
<td>-0.44 (1 2 4)</td>
</tr>
</tbody>
</table>

Reduces running time from 2^n to $2^{n/2}$ log n by consuming $2^{n/2}$ memory.

8-Queens Problem

- 8-queens problem. Place 8 queens on a chessboard so that no queen can attack any other queen.

<table>
<thead>
<tr>
<th>Job</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>1.73</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>2.23</td>
</tr>
<tr>
<td>5</td>
<td>3.00</td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Representation. Can represent solution as a permutation: $q[i] =$ column of queen in row i.

```java
int[] q = { 5, 7, 1, 3, 8, 6, 4, 2 };
```

Queens 1 and 3 can attack each other if $|q[1] + 1| = |q[3] + 3|$.
Enumerating Permutations

Permutations. Given n items, enumerate all n! permutations.

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

3 followed by any permutation of 1 2 4
1 followed by any permutation of 2 3 4
2 followed by any permutation of 1 3 4
3 followed by any permutation of 1 2 4

Enumerating all Permutations

To enumerate all permutations of a set of n elements:
- For each element aᵢ:
 - put aᵢ first, then append
 - a permutation of the remaining elements (a₀, ..., aᵢ₋₁, aᵢ₊₁, ..., aₙ₋₁)

4-Queens Search Tree
N Queens: Backtracking solution

Backtracking. Iterate through elements of search space.
- for each row, there are N possible choices.
- make one choice and recur.
- if the choice does not work, backtrack to previous choice, and make next available choice.

Backtracking amounts to **pruning** the search space.

For N queens: if you find a diagonal conflict, no need to continue

Improvements.
- try to make an “intelligent” choice
- try to reduce cost of choosing/backtracking

N-Queens: Backtracking solution

```java
private static void enumerate(int[] q, int n)
{
   int N = q.length;
   if (n == N) printQueens(q);
   for (int i = n; i < N; i++)
   {
      swap(q, i, n);
      if (isConsistent(q, n)) enumerate(q, n+1);
      swap(q, n, i);
   }
}
```

int N = 4;
int[] q = { 1, 2, 3, 4 };
enumerate(q, N);

4-Queens Search Tree (pruned)

subsets
permutations
counting
paths in a lattice
paths in a graph
Counting: Java Implementation

Enumerate all M-digit base-R numbers.

```
private static void count(int[] number, int digit)
{
    if (digit == M)
    {  show(number); return;  }
    for (int n = 0; n < R; n++)
    {  count(number, digit + 1);  }
    number[digit] = 0;
}
```

Fill 9-by-9 grid so that every row, column, and box contains the digits 1 through 9.

```
0 0 0  1 0 0  2 0 0  
0 0 1  1 0 1  2 0 1  
0 0 2  1 0 2  2 0 2  
0 1 0  1 1 0  2 1 0  
0 1 1  1 1 1  2 1 1  
0 1 2  1 1 2  2 1 2  
0 2 0  1 2 0  2 2 0  
0 2 1  1 2 1  2 2 1  
0 2 2  1 2 2  2 2 2  
```

Remark. Natural generalization is NP-hard.

Sudoku

Linearize. Treat 9-by-9 array as an array of length 81.

Enumerate all assignments. Count from 0 to $9^{81} - 1$ in base 9.

```
7 2 8 9 4 6 3 1 5  
9 3 4 2 5 1 6 7 8  
5 1 6 7 3 8 2 4 9  
1 4 7 5 9 3 8 2 6  
3 6 9 4 8 2 1 5 7  
8 5 2 1 6 7 4 6 3  
2 9 3 6 1 5 7 8 4  
4 8 1 3 7 9 5 6 2  
6 7 5 8 2 4 9 3 1  
```

Remark. Natural generalization is NP-hard.
Sudoku: Backtracking solution

Backtracking. Iterate through elements of search space.
- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you reach a contradiction, backtrack to previous choice, and make next available choice.

Backtracking amounts to **pruning** the search space.

For Sudoku:
if you find a conflict in row, column or box, no need to continue

Improvements.
- try to make an "intelligent" choice
- try to reduce cost of choosing/backtracking

Sudoku: Java implementation

```java
private static void solve(int[] board, int cell)
{
    if (cell == 81)
    {
        show(board); return;
    }
    if (board[cell] != 0)
    {
        solve(board, cell + 1); return;
    }
    for (int n = 1; n <= 9; n++)
    {
        if (isConsistent(board, cell, n))
        {
            board[cell] = n;
            solve(board, cell + 1);
        }
    }
    board[cell] = 0;
}
```

```java
int[] board = { 7, 0, 8, 0, 0, 0, 3, ... };
solve(board, 0);
```

Subsets, permutations, counting, paths in a lattice, paths in a graph

All Paths on a Grid

All paths. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.
no atoms can occupy same position at same time
Boggle

Boggle. Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of letters on current path as a prefix → use a trie.

```
B A X X X
X C A C K
X K A X X
X T X X X
XXX XXX
```

Boggle: Java Implementation

```java
private void dfs(String prefix, int i, int j)
{
    if (i < 0 || i >= N) ||
        (j < 0 || j >= N) ||
        !visited[i][j]) ||
        !dictionary.containsAsPrefix(prefix))
    return;

    visited[i][j] = true;
    prefix = prefix + board[i][j];

    if (dictionary.contains(prefix))
        found.add(prefix);

    for (int ii = -1; ii <= 1; ii++)
        for (int jj = -1; jj <= 1; jj++)
            dfs(prefix, i + ii, j + jj);

    visited[i][j] = false;
}
```

Hamilton Path

Hamilton path. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

visit every edge exactly once
Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at v:
- Add v to current path.
- For each vertex w adjacent to v:
 - find a simple path starting at w using all remaining vertices
- Remove v from current path.

How to implement?
- add cleanup to DFS (!)

Hamilton Path: Java implementation

```java
public class HamiltonPath {
    private boolean[] marked;
    private int[] pred;

    public HamiltonPath(Graph G) {
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            dfs(G, v, 1);
    }

    private void dfs(Graph G, int v, int depth) {
        marked[v] = true;
        if (depth == G.V()) System.out.println("Path found!");
        for (int w : G.adj(v))
            if (!marked[w]) {
                pred[w] = v;
                dfs(G, w, depth + 1);
            }
        marked[v] = false;
    }
}
```

The Longest Path

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.
The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Gary, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Knight's Tour

Knight's tour. Find a sequence of moves for a knight so that, starting from any square, it visits every square on a chessboard exactly once.

![legal knight moves](image1)

![a knight's tour](image2)

Solution. Find a Hamilton path in knight's graph.

Hamilton's Tour

Backtracking solution. To find Hamilton path starting at v:
- Add v to current path.
- For each vertex w adjacent to v:
 - find a simple path starting at w using all remaining vertices
- Remove v from current path.

How to implement?
- add cleanup to DFS (!)
Course evaluation info

Course: COS 226
Term: Spring '07.
Lecturer: Robert Sedgewick
Precept instructor: Jimin Song (01)
or David Walker (01A or 02)
or Mohammad Ghidary (03)

Please use a #2 pencil (provided).

Final exam info

Saturday, May 19 at 7:30 PM.
Review sessions:
- Prepare and e-mail questions in advance.
- All questions answered.
- No questions? No session.
- Any student may attend any or all sessions.

mohammad: 1PM Wed 16 May
dave: 1PM Thu 17 May
jimin: 1PM Fri 18 May