Undirected Graphs • introduction • Graph API • maze exploration • depth-first search • breadth-first search • breadth-first search • connected components • challenges References: Algorithms, Chapters 17-18 Intro to Java, Section 4.5 Intro to Algs and Data Structures, Section 5.1 Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

introduction

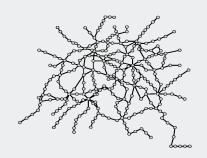
Graph API maze exploration depth-first search breadth-first search connected components challenges

Undirected Graphs

Graph. Set of vertices connected pairwise by edges.

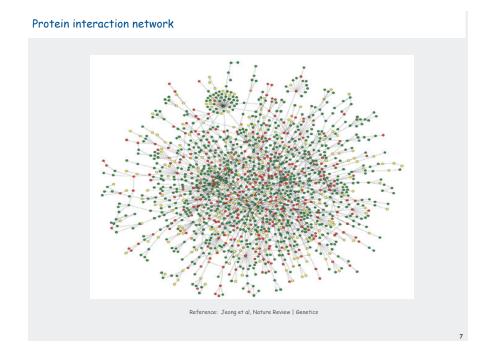
Why study graph algorithms?

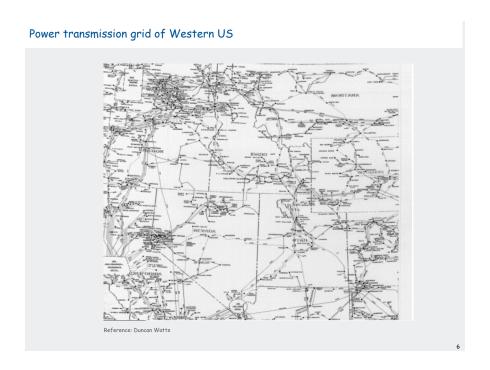
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

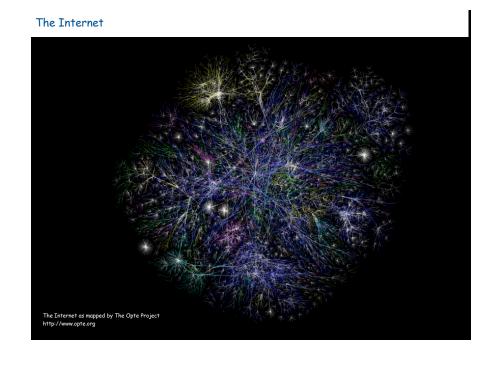


Graph Applications

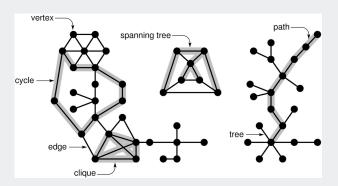
Graph		
communication	telephones, computers	fiber optic cables
circuits	gates, registers, processors	wires
mechanical	joints	rods, beams, springs
hydraulic	reservoirs, pumping stations	pipelines
financial	stocks, currency	transactions
transportation	street intersections, airports	highways, airway routes
scheduling	tasks	precedence constraints
software systems	functions	function calls
internet	web pages	hyperlinks
games	board positions	legal moves
social relationship	people, actors	friendships, movie casts
neural networks	neurons	synapses
protein networks	proteins	protein-protein interactions
chemical compounds	molecules	bonds







Graph terminology



introduction

Graph API

maze exploration depth-first search breadth-first search connected components challenges

Some graph-processing problems

Path. Is there a path between s to t?

Shortest path. What is the shortest path between s and t?

Longest path. What is the longest simple path between s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

Graph representation

Vertex representation.

- This lecture: use integers between 0 and v-1.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

.

Graph API

```
public class Graph (graph data type)

Graph (int V) create an empty graph with V vertices
Graph (int V, int E) create a random graph with V vertices, E edges

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj (int v) return an iterator over the neighbors of v

int V() return number of vertices

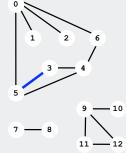
String toString() return a string representation
```

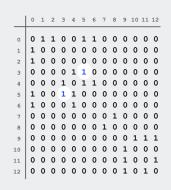
iterate through all edges (in each direction)

Adjacency matrix representation

Store a two-dimensional $v \times v$ boolean array.

For each edge v-w in graph: adj[v][w] = adj[w][v] = true.

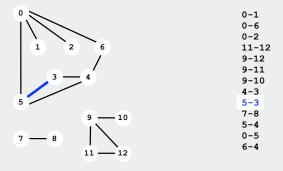




15

Set of edges representation

Store a list of the edges (linked list or array)



Adjacency-matrix graph representation: Java implementation

```
public class Graph
   private int V;
                                                adjacency
   private boolean[][] adj;
                                                 matrix
   public Graph(int V)
       this.V = V;
                                               create empty
V-vertex graph
       adj = new boolean[V][V];
   public void addEdge(int v, int w)
       adj[v][w] = true;
                                                 add edge v-w
                                               (no parallel edges)
       adj[w][v] = true;
   public Iterable<Integer> adj(int v)
                                                iterator for
       return new AdjIterator(v); <
                                               v's neighbors
```

..

Adjacency matrix: iterator for vertex neighbors

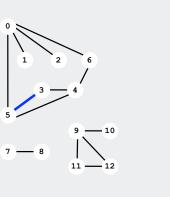
Adjacency-list graph representation: Java implementation

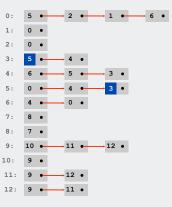
```
public class Graph
   private int V;
                                                  adjacency
lists
   private SET<Integer>[] adj;
   public Graph(int V)
      this.V = V;
      adj = (SET<Integer>[]) new SET[V];
                                                 create empty
      for (int v = 0; v < V; v++)
                                                V-vertex graph
          adj[v] = new SET<Integer>();
   public void addEdge(int v, int w)
      adi[v].add(w);
                                                   add edge v-w
      adj[w].add(v);
                                                (parallel edges allowed)
   public Iterable<Integer> adj(int v)
                                                iterable SET for
      return adj[v];
                                                 v's neighbors
```

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Note: two representations of each undirected edge.





Graph Representations

Graphs are abstract mathematical objects.

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

List of edges	E	E	E
Adjacency matrix	V ²	1	V
Adjacency list	E + V	degree(v)	degree(v)

In practice: Use adjacency list representation

- Bottleneck is iterating over edges incident to v.
- Real world graphs tend to be sparse.

E is proportional to V

introduction Graph API

maze exploration

depth-first search breadth-first search connectivity Euler tour

Trémaux Maze Exploration

Trémaux maze exploration.

- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

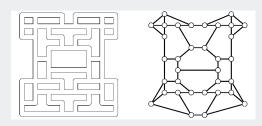
Claude Shannon (with Theseus mouse)

22

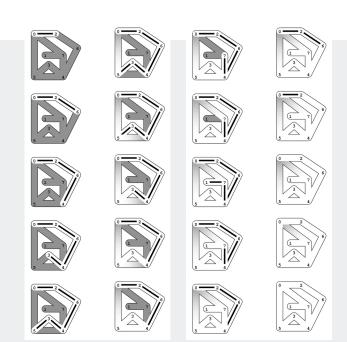
Maze Exploration

Maze graphs.

- Vertex = intersections.
- Edge = passage.



Goal. Explore every passage in the maze.



Maze Exploration

Flood fill

Photoshop "magic wand"

27

introduction
Graph API
maze exploration

depth-first search

breadth-first search connected components challenges

Graph-processing challenge 1:

Problem: Flood fill

Assumptions: picture has millions to billions of pixels

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

Depth-first search

Goal. Systematically search through a graph.

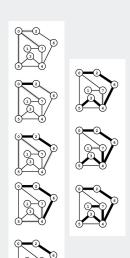
Idea. Mimic maze exploration.

Typical applications.

- find all vertices connected to a given s
- find a path from s to t

Running time.

- O(E) since each edge examined at most twice
- usually less than V to find paths in real graphs



Design pattern for graph processing

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., DFSearcher.
- Query the graph-processing routine for information.

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    Graph G = new Graph(in);
    int s = 0;
    DFSearcher dfs = new DFSearcher(G, s);
    for (int v = 0; v < G.V(); v++)
        if (dfs.isConnected(v))
            System.out.println(v);
}</pre>
```

find and print all vertices connected to (reachable from) s

Decouple graph from graph processing.

Depth-first-search (connectivity)

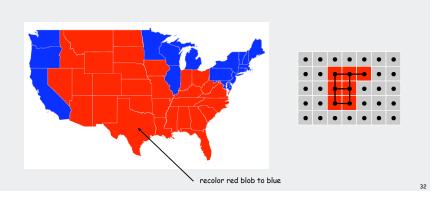
```
public class DFSearcher
                                                  true if
   private boolean[] marked;
                                                connected to s
   public DFSearcher(Graph G, int s)
                                                constructor
      marked = new boolean[G.V()];
                                               marks vertices
      dfs(G, s);
                                               connected to s
   private void dfs(Graph G, int v)
      marked[v] = true;
                                               recursive DFS
      for (int w : G.adj(v))
                                                does the work
          if (!marked[w]) dfs(G, w);
   public boolean isReachable(int v)
                                              client can ask whether
      return marked[v];
                                                 any vertex is
                                                 connected to s
```

Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

- vertex: pixel.
- edge: between two adjacent lime pixels.
- blob: all pixels connected to given pixel.

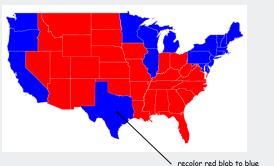


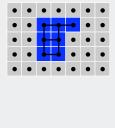
Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

- vertex: pixel.
- edge: between two adjacent red pixels.
- blob: all pixels connected to given pixel.





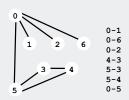
Graph-processing challenge 3:

Problem: Find a path from s to t.

Assumptions: any path will do

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows



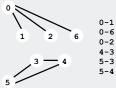
35

Graph-processing challenge 2:

Problem: Is there a path from s to t?

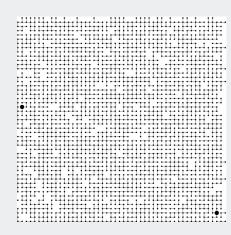
How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows



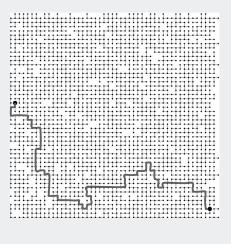
Paths in graphs

Is there a path from s to t? If so, find one.



Paths in graphs

Is there a path from s to t? If so, find one.



Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred back from v.

Paths in graphs

Is there a path from s to t?

method	preprocess time	query time	space
Union Find	V + E log* V	log* V †	V
DFS	E + V	1	E + V
		† amortized	

If so, find one.

- Union-Find: no help (use DFS on connected subgraph)
- DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions. DFS advantage. Can recover path itself in time proportional to its length.

Depth-first-search (pathfinding)

```
public class DFSearcher
                                                    add instance variable for
   private int[] pred;
                                                   parent-link representation
                                                        of DES tree
   public DFSearcher(Graph G, int s)
      pred = new int[G.V()];
                                                   initialize it in the
      for (int v = 0; v < G.V(); v++)
                                                     constructor
          pred[v] = -1;
   private void dfs(Graph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w])
             pred[w] = v;
                                                    set parent link
             dfs(G, w);
   public Iterable<Integer> path(int v)
                                                    add method for client
                                                    to iterate through path
   { // next slide }
```

Depth-first-search (pathfinding iterator)

```
public Iterable<Integer> path(int v)
{
    Stack<Integer> path = new Stack<Integer>();
    while (v != -1 && marked[v])
    {
        list.push(v);
        v = pred[v];
    }
    return path;
}
```


introduction
Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

DFS summary

Enables direct solution of simple graph problems.

- Find path from s to t.
- Connected components.
- Euler tour.
- · Cycle detection.
- Bipartiteness checking.

Basis for solving more difficult graph problems.

- Biconnected components.
- Planarity testing.

Breadth First Search

Depth-first search. Put unvisited vertices on a stack. Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.

Repeat until the queue is empty:

- lacktriangledown remove the least recently added vertex lacktriangledown
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

42

Breadth-first search scaffolding

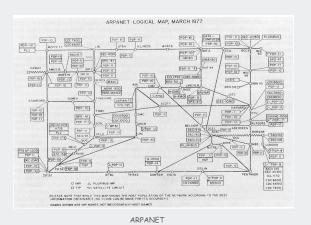
```
public class BFSearcher
  private int[] dist;
                                          distances from s
  public BFSearcher(Graph G, int s)
      dist = new int[G.V()];
     for (int v = 0; v < G.V(); v++)
                                          initialize distances
        dist[v] = G.V() + 1;
     dist[s] = 0;
                                           compute
     bfs(G, s);
                                          distances
  public int distance(int v)
                                          answer client
   query
  private void bfs(Graph G, int s)
   { // See next slide. }
```

Breadth-first search (compute shortest-path distances)

```
private void bfs(Graph G, int s)
{
   Queue<Integer> q = new Queue<Integer>();
   q.enqueue(s);
   while (!q.isEmpty())
   {
      int v = q.dequeue();
      for (int w : G.adj(v))
      {
        if (dist[w] > G.V())
        {
            q.enqueue(w);
            dist[w] = dist[v] + 1;
        }
    }
}
```

BFS Application

- Facebook.
- Kevin Bacon numbers.
- Fewest number of hops in a communication network.



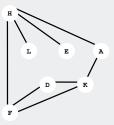
introduction
Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

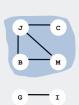
Connectivity Queries

Def. Vertices v and w are connected if there is a path between them.

Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w? in constant time





rtex	Compone
A	0
В	1
С	1
D	0
E	0
F	0
G	2
H	0
I	2
J	1
K	0
L	0
M	1

Union-Find? not quite

47

Depth-first search for connected components

```
public class CCFinder
   private int components;
   private int[] cc;
                                                    component labels
   public CCFinder (Graph G)
      cc = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         cc[v] = -1;
                                                      DFS for each
      for (int v = 0; v < G.V(); v++)
                                                       component
         if (cc[v] == -1)
            { dfs(G, v); components++; }
   private void dfs(Graph G, int v)
      cc[v] = components;
      for (int w : G.adj(v))
                                                    standard DFS
         if (cc[w] == -1) dfs(G, w);
   public int connected(int v, int w)
                                                      constant-time
   { return cc[v] == cc[w]; }
                                                    connectivity query
```

Connected Components

Goal. Partition vertices into connected components.

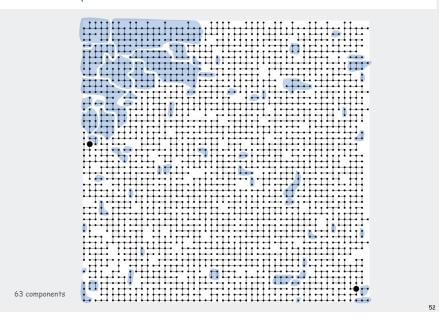
Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex \mathbf{v} , run DFS and identify all vertices discovered as part of the same connected component.

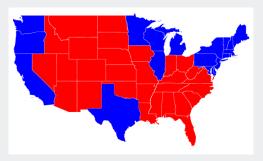
Preprocess Time	Query Time	Extra Space
E+V	1	V

Connected Components



Connected components application: Image processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.



Input: scanned image

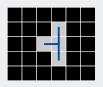
Output: number of red and blue states

Connected components application: Particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70.
- Blob: connected component of 20-30 pixels.

black = 0 white = 255



Particle tracking. Track moving particles over time.

55

Connected Components Application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Efficient algorithm.

- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

	1	1	1	1	1	6	6	8	9	9	11
			1	6	6	6	8	8	11	9	11
3			1	6	6	4	8	11	11	11	11
3			1	1	6	2	11	11	11	11	11
10	10	10	10	1	1	2	11	11	11	11	11
7	7	2	2	2	2	2	11	11	11	11	11
7	7				2	2	11	11	11	11	11

introduction
Graph API
maze exploration
depth-first search
breadth-first search
connected components

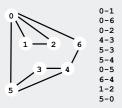
challenges

Graph-processing challenge 4:

Problem: Find a path from s to t Assumptions: any path will do

Which is faster, DFS or BFS?

- 1) DFS
- 2) BFS
- 3) about the same
- 4) depends on the graph
- 5) depends on the graph representation

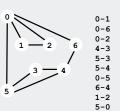


Graph-processing challenge 6:

Problem: Find a path from s to t that uses every edge Assumptions: need to use each edge exactly once

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows



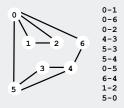
59

Graph-processing challenge 5:

Problem: Find a path from s to t
Assumptions: any path will do
randomized iterators

Which is faster, DFS or BFS?

- 1) DFS
- 2) BFS
- 3) about the same
- 4) depends on the graph
- 5) depends on the graph representation

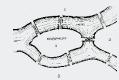


Bridges of Königsberg

earliest application of graph theory or topology

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

"... in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once..."



Euler tour. Is there a cyclic path that uses each edge exactly once?

Answer. Yes iff connected and all vertices have even degree.

Tricky DFS-based algorithm to find path (see Algs in Java).

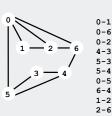
58

Graph-processing challenge 7:

Problem: Find a path from s to t that visits every vertex Assumptions: need to visit each vertex exactly once

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows



61

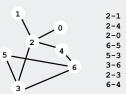
Graph-processing challenge 8:

Problem: Are two graphs identical except for vertex names?

Assumptions: need to visit each vertex exactly once

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows



Graph-processing challenge 9:

Problem: Can you lay out a graph in the plane without crossing edges?

5 4 6

0 2-1 2-4 2-0 6-5 5-3 6 3-6 2-3

How difficult?

- 1) any CS126 student could do it
- 2) need to be a typical diligent CS226 student
- 3) hire an expert
- 4) intractable
- 5) no one knows

03