Undirected Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephones, computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>circuits</td>
<td>gates, registers, processors</td>
<td>wires</td>
</tr>
<tr>
<td>mechanical</td>
<td>joints</td>
<td>rods, beams, springs</td>
</tr>
<tr>
<td>hydraulic</td>
<td>reservoirs, pumping stations</td>
<td>pipelines</td>
</tr>
<tr>
<td>financial</td>
<td>stocks, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersections, airports</td>
<td>highways, airway routes</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>internet</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>games</td>
<td>board positions</td>
<td>legal moves</td>
</tr>
<tr>
<td>social relationship</td>
<td>people, actors</td>
<td>friendships, movie casts</td>
</tr>
<tr>
<td>neural networks</td>
<td>neurons</td>
<td>synapses</td>
</tr>
<tr>
<td>protein networks</td>
<td>proteins</td>
<td>protein-protein interactions</td>
</tr>
<tr>
<td>chemical compounds</td>
<td>molecules</td>
<td>bonds</td>
</tr>
</tbody>
</table>
September 11 hijackers and associates

Reference: Valdis Krebs
http://www.firstmonday.org/issues/issue7_4/krebs

Power transmission grid of Western US

Reference: Duncan Watts

Protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet

The Internet as mapped by The Opte Project
http://www.opte.org
Graph terminology

Some graph-processing problems

Path. Is there a path between s to t?
Shortest path. What is the shortest path between s and t?
Longest path. What is the longest simple path between s and t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

Graph representation

Vertex representation.
- This lecture: use integers between 0 and v-1.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.
Graph API

```java
public class Graph {
    private int V;
    private boolean[][] adj;

    public Graph(int V) {
        this.V = V;
        adj = new boolean[V][V];
    }

    public void addEdge(int v, int w) {
        adj[v][w] = true;
        adj[w][v] = true;
    }

    public Iterable<Integer> adj(int v) {  
        return new AdjIterator(v);
    }
}
```

Adjacency-matrix graph representation: Java implementation

```java
public class Graph {
    private int V;
    private boolean[][] adj;

    public Graph(int V) {
        this.V = V;
        adj = new boolean[V][V];
    }

    public void addEdge(int v, int w) {
        adj[v][w] = true;
        adj[w][v] = true;
    }

    public Iterable<Integer> adj(int v) {  
        return new AdjIterator(v);
    }
}
```

Set of edges representation

```java
Graph G = new Graph(V, E);
System.out.println(G);
for (int v = 0; v < G.V(); v++)
   for (int w : ... of v)
       // process edge v-w
```

Adjacency matrix representation

Store a two-dimensional $V \times V$ boolean array.

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

Adjacency matrix:
- Create an empty V-vertex graph.
- Add an edge $v-w$.
- Return an iterator over the neighbors of v.
- Return number of vertices.
- Return a string representation.

Set of edges:
- Store a list of the edges (linked list or array).
- Iterate through all edges (in each direction).

Adjacency-matrix:
- Create an empty $V \times V$ boolean array.
- For each edge $v-w$ in graph: $\text{adj}[v][w] = \text{adj}[w][v] = true$.
Adjacency matrix: iterator for vertex neighbors

```java
private class AdjIterator implements Iterator<Integer>, Iterable<Integer>
{
    int v, w = 0;

    AdjIterator(int v)
    { this.v = v; }

    public boolean hasNext()
    { while (w < V) { if (adj[v][w++]) return true; } return false; }

    public int next()
    { if (!hasNext()) throw new NoSuchElementException(); return w++; }

    public Iterator<Integer> iterator()
    { return this; }
}
```

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Note: two representations of each undirected edge.

```
0: 5 2 1 6
1: 0*
2: 0*
3: 4 5 3*
4: 6 5 3*
5: 0 4 3*
6: 4 0*
7: 8*
8: 7*
9: 10 -11 -12*
10: 9*
11: 9 -12* 11*
12: 9 -11*
```

Graph Representations

Graphs are abstract mathematical objects.

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Space</th>
<th>Edge between v and w?</th>
<th>Iterate over edges incident to v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of edges</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Adjacency matrix</td>
<td>V^2</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Adjacency list</td>
<td>E + V</td>
<td>degree(v)</td>
<td>degree(v)</td>
</tr>
</tbody>
</table>

In practice: Use adjacency list representation

- Bottleneck is iterating over edges incident to v.
- Real world graphs tend to be sparse.

E is proportional to V
Maze Exploration

Maze graphs.
- Vertex = intersections.
- Edge = passage.

Goal. Explore every passage in the maze.

Trémaux Maze Exploration

Trémaux maze exploration.
- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Claude Shannon (with Theseus mouse)
Maze Exploration

Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges

Flood fill
Photoshop "magic wand"

Graph-processing challenge 1:

Problem: Flood fill
Assumptions: picture has millions to billions of pixels

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows
Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

Typical applications.
- find all vertices connected to a given s
- find a path from s to t

Running time.
- \(O(E) \) since each edge examined at most twice
- usually less than \(V \) to find paths in real graphs

Design pattern for graph processing

Typical client program.
- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., DFS searcher.
- Query the graph-processing routine for information.

```java
public static void main(String[] args) {
    In in = new In(args[0]);
    Graph G = new Graph(in);
    int s = 0;
    DFS searcher dfs = new DFS searcher(G, s);
    for (int v = 0; v < G.V(); v++)
        if (dfs.isConnected(v))
            System.out.println(v);
}
```

Decouple graph from graph processing.

Depth-first-search (connectivity)

```java
public class DFS searcher
{
    private boolean[] marked;

    public DFS searcher(Graph G, int s)
    {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean isReachable(int v)
    {
        return marked[v];
    }
}
```

Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph
- vertex: pixel.
- edge: between two adjacent lime pixels.
- blob: all pixels connected to given pixel.

recolor red blob to blue
Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph
- vertex: pixel.
- edge: between two adjacent red pixels.
- blob: all pixels connected to given pixel.

Graph-processing challenge 2:

Problem: Is there a path from s to t?
Assumptions: any path will do

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

Graph-processing challenge 3:

Problem: Find a path from s to t.
Assumptions: any path will do

Paths in graphs

Is there a path from s to t? If so, find one.
Paths in graphs

Is there a path from s to t? If so, find one.

<table>
<thead>
<tr>
<th>method</th>
<th>preprocess time</th>
<th>query time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Find</td>
<td>V + E log* V</td>
<td>log* V</td>
<td>V</td>
</tr>
<tr>
<td>DFS</td>
<td>E + V</td>
<td>1</td>
<td>E + V</td>
</tr>
</tbody>
</table>

† amortized

If so, find one.
- Union-Find: no help (use DFS on connected subgraph)
- DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions.
DFS advantage. Can recover path itself in time proportional to its length.

Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred back from v.

DFSearcher

```java
public class DFSearcher {
    ...  
    private int[] pred;
    public DFSearcher(Graph G, int s) {
        pred = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
            pred[v] = -1;
    }
    ...  
    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) {
                pred[w] = v;
                dfs(G, w);
            }
    }
    public Iterable<Integer> path(int v) {
        // next slide
    }
}
```

add instance variable for parent-link representation of DFS tree
initialize it in the constructor
set parent link
add method for client to iterate through path
Depth-first-search (pathfinding iterator)

```java
public Iterable<Integer> path(int v) {
    Stack<Integer> path = new Stack<Integer>();
    while (v != -1 && marked[v]) {
        list.push(v);
        v = pred[v];
    }
    return path;
}
```

DFS summary

Enables direct solution of simple graph problems.
- Find path from \(s\) to \(t\).
- Connected components.
- Euler tour.
- Cycle detection.
- Bipartiteness checking.

Basis for solving more difficult graph problems.
- Biconnected components.
- Planarity testing.

Breadth First Search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from \(s\) to \(t\) that uses fewest number of edges.

BFS (from source vertex \(s\))

- Put \(s\) onto a FIFO queue.
- Repeat until the queue is empty:
 - remove the least recently added vertex \(v\)
 - add each of \(v\)'s unvisited neighbors to the queue, and mark them as visited.

Property. BFS examines vertices in increasing distance from \(s\).
Breadth-first search scaffolding

```java
public class BFSearcher {
    private int[] dist;

    public BFSearcher(Graph G, int s) {
        dist = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
            dist[v] = G.V() + 1;
        dist[s] = 0;
        bfs(G, s);
    }

    public int distance(int v) {
        return dist[v];
    }

    private void bfs(Graph G, int s) {
        // See next slide.
    }
}
```

Breadth-first search (compute shortest-path distances)

```java
private void bfs(Graph G, int s) {
    Queue<Integer> q = new Queue<Integer>();
    q.enqueue(s);
    while (!q.isEmpty())
        {  // See next slide.
            int v = q.dequeue();
            for (int w : G.adj(v))
                {  // See next slide.
                    if (dist[w] > G.V())
                        {  // See next slide.
                            q.enqueue(w);
                            dist[w] = dist[v] + 1;
                        }
                }
        }
}
```

BFS Application

- Facebook.
- Kevin Bacon numbers.
- Fewest number of hops in a communication network.
Def. Vertices \(v \) and \(w \) are connected if there is a path between them.

Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is \(v \) connected to \(w \) in constant time?

Union-Find? not quite

Depth-first search for connected components

```java
public class CCFinder
{
    private int components;
    private int[] cc;
    public CCFinder(Graph G)
    {
        cc = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
            cc[v] = -1;
        for (int v = 0; v < G.V(); v++)
            if (cc[v] == -1)
                { dfs(G, v); components++; }
    }
    private void dfs(Graph G, int v)
    {
        cc[v] = components;
        for (int w : G.adj(v))
            if (cc[w] == -1) dfs(G, w);
    }
    public int connected(int v, int w)
    { return cc[v] == cc[w]; }
}
```

Connected Components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices \(v \) as unmarked.

For each unmarked vertex \(v \), run DFS and identify all vertices discovered as part of the same connected component.

<table>
<thead>
<tr>
<th>Preprocess Time</th>
<th>Query Time</th>
<th>Extra Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E + V)</td>
<td>1</td>
<td>(V)</td>
</tr>
</tbody>
</table>
Connected components application: Image processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Input: scanned image
Output: number of red and blue states

Connected Components Application: Particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
- **Vertex:** pixel.
- **Edge:** between two adjacent pixels with grayscale value ≥ 70.
- **Blob:** connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

Efficient algorithm.
- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

introduction
Graph API
maze exploration
depth-first search
breadth-first search
connected components
challenges
Graph-processing challenge 4:

Problem: Find a path from s to t
Assumptions: any path will do

Which is faster, DFS or BFS?
1) DFS
2) BFS
3) about the same
4) depends on the graph
5) depends on the graph representation

Graph-processing challenge 5:

Problem: Find a path from s to t
Assumptions: any path will do
 randomized iterators

Which is faster, DFS or BFS?
1) DFS
2) BFS
3) about the same
4) depends on the graph
5) depends on the graph representation

Graph-processing challenge 6:

Problem: Find a path from s to t that uses every edge
Assumptions: need to use each edge exactly once

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

Bridges of Königsberg

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
 Tricky DFS-based algorithm to find path (see Algs in Java).
Graph-processing challenge 7:

Problem: Find a path from s to t that visits every vertex

Assumptions: need to visit each vertex exactly once

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

Graph-processing challenge 8:

Problem: Are two graphs identical except for vertex names?

Assumptions: need to visit each vertex exactly once

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

Graph-processing challenge 9:

Problem: Can you lay out a graph in the plane without crossing edges?

How difficult?
1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows