Summary of symbol-table implementations

Ba I anc e d Tr‘e e s guarantee average case ardanad]

implementation search insert delete search insert delete iferation?
unordered array N N N N/2 N/2 N/2 no
ordered array Ig N N N IgN N/2 N/2 yes
unordered list N N N N/2 N N/2 no
o 2-3-4 trees ordered list N N N N/2 N/2 N/2 yes
e red-black trees BST N N N 1391gN 139lgN 2 yes

e B-frees

randomized BST 7IgN 7IgN 7IgN 139IgN 139IgN 139IgN yes

Randomized BSTs provide the desired guarantees

probabilistic, with
References: Algorithms in Java, Chapter 13 exponentially small

Intro to Algs and Data Structs, Section 4.4 chance of error

;)] This lecture: Can we do better?
Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1

Symbol Table Review Typical random BSTs

Symbol table: key-value pair abstraction.

average hode depth

* Insert avalue with specified key. /5/\ o
. N o N N\ AT~
= Search for value given key. ey /‘,\j\/\,>\ \/</?//\1\ Al >0 <
= Delete value with given key L1 /\/>‘\‘n LSS < /\/\IAI\I\‘ AN N A A
/ANVAAN /N AV NV IANA N AR I\/”\/<\/\/\/|IAAH -),\I(”‘I{”,
N/ IV AV N N A VIV N AT Y BANY \ A
) n \ /NN /N AR AAY /
Randomized BST. LR \ o)
1 \
* Guarantee of ~c Ig N time per operation (probabilistic).
* Need subtree count in each node.
* Need random numbers for each insert/delete op.
P N = 2l
. /<\ [N
This lecture. 2-3-4 trees, red-black trees, B-trees. g = s T IgN = 8
N P RN
ST R 1391gN »~ 11
1 AN ANV AL L I
TN AN AN NI A
LIVANN B N B AN B}
AR AN
AN \
7

2-3-4 trees

2-3-4 Tree
2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.
Perfect balance. Every path from root to leaf has same length.
Allow 1, 2, or 3 keys per node.
= 2-node: one key, two children.

* 3-node: two keys, three children.
= 4-node: three keys, four children.

KR
smaller than K larger than R
be‘rween/
Kand R

AN, N

6 J NQSV Yy Z
NN LN

N
~
~
-
~

Searching in a 2-3-4 Tree

Search.

= Compare search key against keys in node.
* Find interval containing search key.
* Follow associated link (recursively).

K R
Kand R

/ AN

Ex. Search for L

Insertionina 2-3-4 Tree

Insert.

FGJ L N Q SV YZ
/\ /\/I\\ /T \ N N N
found L

* Search to bottom for key.

Ex. Insert B

smaller than K

smaller than C CE

//\

/\

B not found

FG6J
/1 v\

L
/

K R

/l\ A\

Insertionina 2-3-4 Tree Insertionina 2-3-4 Tree

Insert. Insert.
= Search to bottom for key. = Search to bottom for key.
* 2-node at bottom: convert fo 3-node. 0

* 3-node at bottom: convert to 4-node.

Ex. Insert B Ex. Insert X

K R K R

smaller than K

smaller than C CE

AN ANV A

AB D FG6J L NQSV Y Z AB D FG6J L NQSVX Z
/:T\/\/l\\/ \ N LN N I 0N /N v N N \ 2N NN
B fits here 5 X fits here 1
Insertionina 2-3-4 Tree Insertionina 2-3-4 Tree
Insert. Insert.
= Search to bottom for key. = Search to bottom for key.
Ex. Insert X Ex. Insert H
K R K R
larger than R smaller than K

//\ N A //V’””“’"E/l\ A\

F6J L N Q SV VvY«Zz F6J L N Q SV YZ
/\/1\\/ L2 U A I W AR B /\/1|\/ L2 U A I W AR B
X not found H not found

Insertionina 2-3-4 Tree

Insert.
* Search to bottom for key.

* 4-node at bottom: ??
Ex. Insert H

K R

ANV A

ABDFGJLNQSVXY

V2 T 2 N A B W AR L2 N I U A B B
H does not fit here! .
Splitting a 4-node in a 2-3-4 tree
Idea: split the 4-node to make room CEG

CE
//\ AB D F J
P2 I 2 WY A WY A
AB D FG6J T

VAN I 2 W A B H does fit here!

H does not fit here

CEG

1IN

AB D F HJ
V2 T 2 W A U A BN

Problem: Doesn't work if parent is a 4-node
Solution 1: Split the parent (and continue splitting while necessary).
Solution 2: Split 4-nodes on the way down.

Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.
* Ensures last node is not a 4-node.
= Transformations to split 4-nodes:

IRe AR
TIRe TRR

Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy since it's not a 4-node.

Splitting 4-nodes in a 2-3-4 tree
Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 2-node

"IR® AR
N =
N0 ANV
W2\

could be huge unchanged
16

Splitting 4-nodes in a 2-3-4 tree
Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node

TIR® TRR

//DH\ _.//\\
\ ee/l\\ A A

could be hug unchanged
17

Splitting 4-nodes in a 2-3-4 tree
Local transformations that work anywhere in the tree

Splitting a 4-node attached to a 4-node never happens
when we split nodes on the way down the tree.

Invariant. Current node is nhot a 4-node.

2-3-4 Tree
Tree grows up from the bottom.

tree height
grows only when

O
root splits \

2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.

Tree height.

= Worst case: Ig N [all 2-nodes]
= Best case: log,N=1/2IgN [all 4-nodes]
= Between 10 and 20 for a million nodes.

= Between 15 and 30 for a billion nodes.

20

2-3-4 Tree: Implementation?

Direct implementation is complicated, because:

* Maintai

pri

{

ning multiple node types is cumbersome.
= Implementation of getchild() involves multiple compares.
= Large number of cases for split(), make3Node(), and make4Node ().

vate void insert(Key key, Val val)

Node x = root;
while (x.getChild(key) !'= null)
{

x = x.getChild (key) ;

if (x.is4Node()) x.split():;
}

if (x.is2Node ()) x.make3Node (key, val);
else if (x.is3Node()) x.makedNode (key, val);

fantasy code

Bottom line: could do it, but say funed for an easier way.

Summary of sym

unordered array N N N N/2 N/2
ordered array IgN N N IgN N/2
unordered list N N N N/2 N

ordered list N N N N/2 N/2
BST N N N 1.38I1gN 138IgN

randomized BST 7IgN 7IgN 7IgN 138IgN 138IgN

2-3-4 tree

bol-table implementations

clgN clgN clgN clgN

N\ L7

constants depend upon
implementation

N/2
N/2
N/2
N/2

?

1.381g N

no
yes

no
yes
yes

yes

22

red-black trees

Red-black trees (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a BST.
* Use "internal" edges for 3- and 4- nodes.

etk e

“red” glue

= Correspondence between 2-3-4 trees and red-black trees.

not 1-1 because 3-nodes

/ can swing either way.

24

Red-Black Tree

Represent 2-3-4 tree as a BST.
* Use "internal" edges for 3- and 4- nodes.

etk e

= Disallowed: fwo red edges in-a-row.

“red” glue

7\ /7
1\ /\
/\ /\

25

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.
TR
T Rk R TRR

26

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.
T TR A
Two hard cases. Use rotations.
it
? do single rotation
(o =
? do double rotation

27

Rotations in a red-black tree

to insert G:

change colors

single
rotation
right rotate R —
double
= rotation
single
rotation
left rotate E —
H (N Ts)
Ol] Ol

G does fit here! 28

Red-Black Tree: Insertion

E
black tree height
grows only when =
root splits \
X A
M 12
L E

29

Red-Black Tree: Balance

Property A. Every path from root to leaf has same number of black links.
Property B. Never two red links in-a-row.
Property C. Height of tree is less than 2 Ig N + 2 in the worst case.

Property D. Height of tree is Ig N in the average case.

30

Search implementation for red-black trees

public Val get (Key key)
{
Node x = root;
while (x !'= null)

{
int cmp = key.compareTo (x.key) ;
if (cmp == 0) return x.val;
else if (cmp < 0) x = x.left;
else x = x.right;

}

return null;

Search code is the same as elementary BST.

Runs faster because of better balance in tree.

Insert implementation for red-black trees (skeleton)

public class BST<Key extends Comparable, Val>
implements Iterable
{
private static final boolean RED
private static final boolean BLACK
private Node root;

true;
false;

private class Node
{
Key key;
Val value;
Node left, right;
color of incoming link —> boolean color;
Node (Key key, Val val)
{
this.key = key;
this.val = val;
this.color = color;

extra argument

[stay funed]
public void put (Key key, Val val)
{

root = put(root, key, value, false);
root.color = BLACK;
}

32

Insert implementation for red-black trees (strategy)

Search as usual
= if key found reset value, as usual
* if key not found add a new red node at the bottom in the usual way

Split 4-nodes on the way down the tree.

33

flip col K R
ip colors o o o
* may leave two red links in a row
(unbalanced 4-node) higher up in the tree
. N \
Perform rotations on the way up the tree. RN N
= look for two red links in a row \
= perform bottom rotation if directions are different
* perform top rotation to balance 4-nodes
= symmetric cases for left and right \ .
. A
Nonrecursive top-down implementation possible, but requires
keeping frack of great-grandparent on search path (!) and lots of cases.
Insert implementation for red-black trees
private Node insert(Node x, Key key, Value value, boolean sw)
{ *—_ extraargument
if (x == null) return new Node (key, value, RED); is true iff x is a right child
int cmp = key.compareTo (x.key) ;
N \
if (isRed(x.left) && isRed(x.right))
{ x.color = RED; x.left.color = BLACK; x.right.color = BLACK; } ' ‘ /7 \
if (cmp == 0) x.val = val;
else if (cmp < 0))
{
x.left = insert(x.left, key, value, false); \ \
if (isRed(x) && isRed(x.left) && sw) x = rotR(x); ' \ ‘
if (isRed(x.left) && isRed(x.left.left)) \

{
X = rotR(x);
x.color = BLACK; x.right.color = RED;

D } Caution: extremely tricky

else // if (cmp > 0) <— recursive code.

{ Read extremely carefully!
x.right = insert(x.right, key, value, true);

if (isRed(h) && isRed(x.right) && !sw) x = rotL(x);

if (isRed(h.right) && isRed(h.right.right)) ‘
{ 0
x = rotL(x); \
x.color = BLACK; x.left.color = RED;
}
}

return x;

34

Summary of symbol-table implementations

unordered array N N N N/2 N/2 N/2
ordered array Ig N N N IgN N/2 N/2
unordered list N N N N/2 N N/2

ordered list N N N N/2 N/2 N/2
BST N N N 1.38I1gN 1.38IgN ?

randomized BST 7IgN 7IgN 7IgN 138IgN 138IgN 138IgN
2-3-4 tree clgN cligN clgN clgN

red-black tree 2IgN 2IgN 2IgN Ig N IgN IgN

exact value of coefficient unknown
but extremely close to 1

Typical random red-black trees

ho

no

yes
yes
yes

yes

— e,
S~ — S —
N N N S~ SN N S —
N/A AN AN AN N ARNA N N oS
ACANNANAA /S AN A AL AN AN NAANNAN AN N N AN
NN ANANAKEMEANN A A KKRA AN A MR ARKA RAKAXAWIANAEARKA A NMAN A A ANA NKA
RATNARY AN & TR KRR AN VAA KR ARALL IR AVITEA ATWRRIE VUK N SKRVARUAA MIA A ARA R A ARARA A ATIRY
TN LITIARAR ACLIALIN L n won HENAT L AAVURRARR A WA RRAL)
1 1 1] I noo 1
— N = 250
= -
I N /N s
N AN AN INA N ~
ANANNNA NNANANNKS N IgN 8
AANNA NAANNAAAN /A AAANIAN A ATRNAA A A N\
ANGL TR LR AT &K A KN AARA KA \RKARE KK ATk RATAA
1 AR [T A | DAL AR I N - 1 o~ 7
W 1 9

average node depth

35

36

Space-time tradeoff.

* Mlarge = only a few levels in tree.
= Msmall = less wasted space.

= Typical M = 1000, N <1 trillion.

B-trees

B-trees (Bayer-McCreight, 1972)
B-Tree. Generalizes 2-3-4 trees by allowing up to M links per node.

Main application: file systems.
* Reading a page into memory from disk is expensive.
* Accessing info on a page in memory is free.
* Goal: minimize # page accesses.
* Node size M = page size.

Bottom line. Number of page accesses is log,N per op.

\

3 or 4 in practice!

38

B-Tree Example

706 176 176 e 153 e
| | [706 | adme [601 et [276 o
| | | | | 706 w= | 501 dmmine
| J | J | JI | 708w
no room :3:7‘_’
B
. for275 275 e
153 e |
| 176 o=]
. [273 o - —
000 | 523 e 000 373 -
[s01 o 524 e [373 o {523 e
&5 i 1
| | | so1 524 we—m
L] I L] i
L1 | I ——
[766 et 501 wmnr
773 e 706
- 742 e
766 |
M=5 773 |

B-Tree Example (cont)

T .——‘ el 526 = 601 e
737 - ol e T
| 601 == 641 *—w

742w 706 | Wi

o 742 o } | 736 e

766 w—w 1 737 -
773 e p—

742 —

J 766 e

153 e
| 176 | @t
| 523] e
| 601 getemm

L

no room
for 737

153 | a—m
176 e
275 Gt
373 e
513 8=
- 524 e
000
|01 o= —
| 742 o Nl E01 e
| 706 e
737
742 | e

766 #—r
773

39

40

Summary of symbol-table implementations

unordered array N
ordered array Ig N
unordered list

ordered list N

BST N

randomized BST 7IgN 7IgN 7IgN

2-3-4 free clgN
red-black tree

B-free 1

z Z zZz Z Z

clgN

1

N
N
N
N
N

2lgN 2IgN 2IgN

1

N/2
Ig N
N/2
N/2

1441gN

1441gN
clgN
Ig N

1

N/2
N/2
N
N/2

144 1gN
1441gN
clgN
Ig N

1

B-Tree. Number of page accesses is log,N per op.

Balanced trees in the wild

Red-black frees: widely used as system symbol tables
* Java: java.util.TreeMap, java.util.TreeSet.

= C++ STL: map, multimap, multiset.

* Linux kernel: linux/rbtree.h.

B-Trees: widely used for file systems and databases

* Windows: HPFS.
* Mac: HFS, HFS+.

= Linux: ReiserFS, XFS, Ext3FS, JFS.
= Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

N/2
N/2
N/2
N/2

?

144 1gN

Ig N

1

no
yes
no

yes
yes
yes
yes
yes

yes

4

42

Red-black trees in the wild

FADE IN:

ACT FOUR

48 INT. FBI EQ - NIGHT 48

Antonio is at THE COMFUTER as Jess explains herself to Nicole
and Pollock. The CONFERENCE TABLE is covered with OFEN
REFERENCE BOOKS, TOURIST GUIDES, MAFS and REAMS OF FRINTOUTS.

Common sense. Sixth sense.
Together they're the FBI's newest team.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

JE
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black

NICOLE
Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical equations.

\

ANTONIO
It could be an algorithm frem a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

Wicole is tapping away at a computer keyboard. She finds

something

Balanced trees summary

Goal. ST implementation with Ig N guarantee for all ops.
= Difference in quality of guarantee is immaterial.
* Easy to implement other ops: randomized BST.
* Fast average case: red-black tree.
*= Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.

* B-tree.

Next lecture: Can we do better??

43

