Analysis of Algorithms

References:
- Algorithms in Java, Chapter 2
- Intro to Programming in Java, Section 4.1

Overview

Analysis of algorithms: framework for comparing algorithms and predicting performance.

Scientific method:
- **Observe** some feature of the universe.
- **Hypothesize** a model that is consistent with observation.
- **Predict** events using the hypothesis.
- **Verify** the predictions by making further observations.
- **Validate** the theory by repeating the previous steps until the hypothesis agrees with the observations.

Universe = computer itself.

Running time

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage

Charles Babbage (1864) Analytic Engine
Case study: Sorting

Sorting problem:
- Given N items, rearrange them in ascending order.
- Applications: commercial databases, statistics, databases, data compression, computational biology, computer graphics, scientific computing, ...

Insertion sort

Insertion sort.
- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.

public static void InsertionSort(double[] a) {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j] < a[j-1])
 exch(a, j, j-1);
 else break;
}

Insertion sort: Observation

Observe and tabulate operation counts for various values of N.
- concentrate on most frequently performed operation (comparisons for sorting)
- Data source: N random numbers between 0 and 1.

<table>
<thead>
<tr>
<th>N</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>6 million</td>
</tr>
<tr>
<td>10,000</td>
<td>25 million</td>
</tr>
<tr>
<td>20,000</td>
<td>99 million</td>
</tr>
<tr>
<td>40,000</td>
<td>398 million</td>
</tr>
<tr>
<td>80,000</td>
<td>1600 million</td>
</tr>
</tbody>
</table>
Insertion sort: Experimental hypothesis

Data analysis. Plot # comparisons vs. input size on log-log scale.

Regression. Fit line through data points \(a N^b \).

Hypothesis. # comparisons grows quadratically with input size \(N^2/4 \).

Insertion sort: Prediction and verification

Experimental hypothesis. # comparisons \(N^2/4 \).

Prediction. 400 million comparisons for \(N = 40,000 \).

Observations.

<table>
<thead>
<tr>
<th>N</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,000</td>
<td>401.3 million</td>
</tr>
<tr>
<td>40,000</td>
<td>399.7 million</td>
</tr>
<tr>
<td>40,000</td>
<td>401.6 million</td>
</tr>
<tr>
<td>40,000</td>
<td>400.0 million</td>
</tr>
</tbody>
</table>

Agrees.

Prediction. 10 billion comparisons for \(N = 200,000 \).

Observation.

<table>
<thead>
<tr>
<th>N</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000</td>
<td>9.997 billion</td>
</tr>
</tbody>
</table>

Agrees.

Insertion sort: Theoretical hypothesis

Worst case. [descending]

- Iteration \(i \) requires \(i \) comparisons.
- Total = \(0 + 1 + 2 + \ldots + N-2 + N-1 = N^2/2 \).

Average case. [random]

- Iteration \(i \) requires \(i/2 \) comparisons on average.
- Total = \(0 + 1/2 + 2/2 + \ldots + (N-1)/2 = N^2/4 \).
Insertion sort: Theoretical hypothesis

Theoretical hypothesis.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Input</th>
<th>Comparisons</th>
<th>Stddev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst</td>
<td>Descending</td>
<td>$\frac{1}{2} N^2$</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td>Random</td>
<td>$\frac{1}{4} N^2$</td>
<td>$\frac{1}{6} N^{3/2}$</td>
</tr>
<tr>
<td>Best</td>
<td>Ascending</td>
<td>N</td>
<td>-</td>
</tr>
</tbody>
</table>

Validation. Theory agrees with observations.

Insertion sort: Observation

Observe and tabulate actual running time for various values of N.
* Data source: N random numbers between 0 and 1.
* Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.

<table>
<thead>
<tr>
<th>N</th>
<th>Comparisons</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>6.2 million</td>
<td>0.13 seconds</td>
</tr>
<tr>
<td>10,000</td>
<td>25 million</td>
<td>0.43 seconds</td>
</tr>
<tr>
<td>20,000</td>
<td>99 million</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>40,000</td>
<td>400 million</td>
<td>5.6 seconds</td>
</tr>
<tr>
<td>80,000</td>
<td>1.6 billion</td>
<td>23 seconds</td>
</tr>
<tr>
<td>200,000</td>
<td>10 billion</td>
<td>145 seconds</td>
</tr>
</tbody>
</table>

Goal: use models to predict running time.

Timing in Java

Wall clock. Measure time between beginning and end of computation.
* Automatic: Stopwatch.java library.

```java
public class Stopwatch {
    private static long start;
    public static void tic() {
        start = System.currentTimeMillis();
    }
    public static double toc() {
        long stop = System.currentTimeMillis();
        return (stop - start) / 1000.0;
    }
}
```

Regression fit validates hypothesis that total running time is $\sim cN^2$.

A scientific connection between program and natural world.

Insertion sort: A last check

Data analysis. Plot total running time vs. input size on log-log scale.
Measuring running time

Factors that affect running time.
- Machine.
- Compiler.
- Algorithm.
- Input data.

More factors.
- Caching.
- Garbage collection.
- Just-in-time compilation.
- CPU used by other processes.

Bottom line. Often difficult to get precise measurements.

Summary

Analysis of algorithms: framework for comparing algorithms and predicting performance.

Scientific method.
- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Remaining question. How to formulate a hypothesis?

Types of hypotheses

Worst case running time. Obtain bound on largest possible running time of algorithm on any input of a given size N.
- Easy to obtain an initial estimate, harder to refine
- Draconian view: real instances may not come close to worst case

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.
- Hard to accurately model real instances by random distributions.
- Randomized algorithm: create random distribution.

Amortized running time. Worst-case bound on running time of any sequence of N operations.
Estimating the Running Time

Total running time: sum of cost \times frequency for all of the basic ops.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input.

Cost for sorting.
- A = \# exchanges.
- B = \# comparisons.
- Cost on a typical machine = 11A + 4B.

Frequency of sorting ops.
- N = \# elements to sort.
- Selection sort: A = N - 1, B = N(N - 1)/2.

Big Oh Notation

Big Theta, Oh, and Omega notation.
- \Theta(N^2) means \{ N^2, 17N^2, N^2 + 17N^{1.5} + 3N, \ldots \}
 - ignore lower order terms and leading coefficients
- O(N^2) means \{ N^2, 17N^2, N^2 + 17N^{1.5} + 3N, N^{1.5}, 100N, \ldots \}
 - \Theta(N^2) and smaller
 - use for upper bounds
- \Omega(N^2) means \{ N^2, 17N^2, N^2 + 17N^{1.5} + 3N, N^3, 100N^3, \ldots \}
 - \Theta(N^2) and larger
 - use for lower bounds

Never use O-notation to predict performance or to compare algorithms.

Little Oh and Tilde notation.
- o(N^2) means \{ 17N^{1.5} + 3N, N \log N, \ldots \}
 - lower order terms and leading coefficients
- \approx N^2 means \{ 6N^2, 6N^2 + 17N^{1.5} + 3N, 6N^2 + N^{1.5}, 6N^2 + 100N, \ldots \}
 - leading term
 - use to predict performance and compare algorithms

Predictions and guarantees

Research literature: The running time of an algorithm is (O(f(N))

advantages
- guaranteed performance
- can ignore constants

problems
- worst-case running time, cannot predict performance
- constants could play a significant role

This course: The running time of an algorithm is \sim c f(N)

advantages
- can use to predict performance
- can use to compare algorithms

problems
- need to model actual input
- no guarantees
Why asymptotic growth rate matters

<table>
<thead>
<tr>
<th>Run time in nanoseconds →</th>
<th>$1.3N^3$</th>
<th>$10N^2$</th>
<th>$47N \log_2 N$</th>
<th>$48N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.3 seconds</td>
<td>10 msec</td>
<td>0.4 msec</td>
<td>0.048 msec</td>
</tr>
<tr>
<td>10,000</td>
<td>22 minutes</td>
<td>1 second</td>
<td>6 msec</td>
<td>0.48 msec</td>
</tr>
<tr>
<td>100,000</td>
<td>15 days</td>
<td>1.7 minutes</td>
<td>78 msec</td>
<td>4.8 msec</td>
</tr>
<tr>
<td>million</td>
<td>41 years</td>
<td>2.8 hours</td>
<td>0.94 seconds</td>
<td>48 msec</td>
</tr>
<tr>
<td>10 million</td>
<td>41 millennia</td>
<td>1.7 weeks</td>
<td>11 seconds</td>
<td>0.48 seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time to solve a problem of size</th>
<th>N multiplied by 10, time multiplied by 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>second</td>
<td>1,000</td>
</tr>
<tr>
<td>minute</td>
<td>100</td>
</tr>
<tr>
<td>hour</td>
<td>10+</td>
</tr>
<tr>
<td>day</td>
<td>10</td>
</tr>
</tbody>
</table>

Reference: More Programming Pearls by Jon Bentley

Orders of magnitude

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 second</td>
</tr>
<tr>
<td>10</td>
<td>10 seconds</td>
</tr>
<tr>
<td>10^2</td>
<td>1.7 minutes</td>
</tr>
<tr>
<td>10^3</td>
<td>17 minutes</td>
</tr>
<tr>
<td>10^4</td>
<td>2.8 hours</td>
</tr>
<tr>
<td>10^5</td>
<td>1.1 days</td>
</tr>
<tr>
<td>10^6</td>
<td>1.6 weeks</td>
</tr>
<tr>
<td>10^7</td>
<td>3.8 months</td>
</tr>
<tr>
<td>10^8</td>
<td>3.1 years</td>
</tr>
<tr>
<td>10^9</td>
<td>3.1 decades</td>
</tr>
<tr>
<td>10^{10}</td>
<td>3.1 centuries</td>
</tr>
<tr>
<td>...</td>
<td>forever age of universe</td>
</tr>
<tr>
<td>10^{40}</td>
<td>thousand</td>
</tr>
<tr>
<td>10^{40}</td>
<td>million</td>
</tr>
<tr>
<td>10^{40}</td>
<td>billion</td>
</tr>
</tbody>
</table>

Orders of magnitude

<table>
<thead>
<tr>
<th>Meters Per Second</th>
<th>Imperial Units</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>1.2 in / decade</td>
<td>Continental drift</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>1 ft / year</td>
<td>Hair growing</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>3.4 in / day</td>
<td>Glacier</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>1.2 ft / hour</td>
<td>Gastro-intestinal tract</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>2 ft / minute</td>
<td>Ant</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>2.2 mi / hour</td>
<td>Human walk</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>220 mi / hour</td>
<td>Propeller airplane</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>370 mi / min</td>
<td>Space shuttle</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>620 mi / sec</td>
<td>Earth in galactic orbit</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>62,000 mi / sec</td>
<td>1/3 speed of light</td>
</tr>
</tbody>
</table>

Reference: More Programming Pearls by Jon Bentley

Logarithmic Time

Logarithmic time. Running time is $O(\log N)$.

Searching in a sorted list. Given a sorted array of items, find index of query item.

$O(\log N)$ solution. Binary search.

```java
public static int binarySearch(String[] a, String key) {
    int left = 0;
    int right = a.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        int cmp = key.compareTo(a[mid]);
        if (cmp < 0) right = mid - 1;
        else if (cmp > 0) left = mid + 1;
        else return mid;
    }
    return -1;
}
```

Constant Time

Constant time. Running time is $O(1)$.

Elementary operations.
- Function call.
- Boolean operation.
- Arithmetic operation.
- Assignment statement.
- Access array element by index.
Linear Time

Linear time. Running time is $O(N)$.

Find the maximum. Find the maximum value of N items in an array.

```java
double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++) {
    if (a[i] > max)
        max = a[i];
}
```

Linearithmic Time

Linearithmic time. Running time is $O(N \log N)$.

Sorting. Given an array of N elements, rearrange in ascending order.

$\sim c N \log N$ solution. Mergesort. [stay tuned]

Remark. $\Omega(N \log N)$ comparisons required. [stay tuned]

Quadratic Time

Quadratic time. Running time is $O(N^2)$.

Closest pair of points. Given N points in the plane, find closest pair.

$\sim c N^2$ solution. Enumerate all pairs of points.

```java
double min = Double.POSITIVE_INFINITY;
for (int i = 0; i < N; i++) {
    for (int j = i+1; j < N; j++) {
        double dx = (x[i] - x[j]);
        double dy = (y[i] - y[j]);
        if (dx*dx + dy*dy < min)
            min = dx*dx + dy*dy;
    }
}
```

Remark. $\Omega(N^2)$ seems inevitable, but this is just an illusion.

Exponential Time

Exponential time. Running time is $O(a^N)$ for some constant $a > 1$.

Fibonacci sequence: 1 1 2 3 5 8 13 21 34 55 ...

$O(\phi^N)$ solution. Spectacularly inefficient!

```
\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618034...
```

```java
public static int F(int N) {
    if (n == 0 || n == 1) return n;
    else                  return F(n-1) + F(n-2);
}
```

Efficient solution.

$$F(N) = \left\lfloor \phi^N \right\rfloor$$
Summary of Common Hypotheses

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Description</th>
<th>When N doubles, running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant algorithm is independent of input size.</td>
<td>does not change</td>
</tr>
<tr>
<td>(\log N)</td>
<td>Logarithmic algorithm gets slightly slower as N grows.</td>
<td>increases by a constant</td>
</tr>
<tr>
<td>(N)</td>
<td>Linear algorithm is optimal if you need to process N inputs.</td>
<td>doubles</td>
</tr>
<tr>
<td>(N \log N)</td>
<td>Linearithmic algorithm scales to huge problems.</td>
<td>slightly more than doubles</td>
</tr>
<tr>
<td>(N^2)</td>
<td>Quadratic algorithm practical for use only on relatively small problems.</td>
<td>quadruples</td>
</tr>
<tr>
<td>(2^N)</td>
<td>Exponential algorithm is not usually practical.</td>
<td>squares!</td>
</tr>
</tbody>
</table>