Computer Science 226 Algorithms and Data Structures Spring 2007 Instructors: Bob Sedgewick Dave Walker Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

COS 226 course overview

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving with applications.
- Algorithm: method for solving a problem.
- Data structure: method to store information.

Topic	Data Structures and Algorithms
data types	stack, queue, list, union-find, priority queue
sorting	quicksort, mergesort, heapsort, radix sorts
searching	hash table, BST, red-black tree, B-tree
graphs	DFS, Prim, Kruskal, Dijkstra, Ford-Fulkerson
strings	KMP, Rabin-Karp, TST, Huffman, LZW
geometry	Graham scan, k-d tree, Voronoi diagram

_

Course Overview

- outline
- why study algorithms?
- usual suspects
- coursework
- resources (web)
- resources (books)

Why study algorithms?

Their impact is broad and far-reaching

Internet. Web search, packet routing, distributed file sharing.

Biology. Human genome project, protein folding.

Computers. Circuit layout, file system, compilers.

Computer graphics. Hollywood movies, video games.

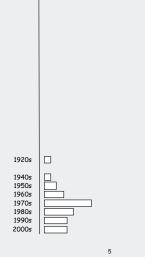
Security. Cell phones, e-commerce, voting machines.

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.

Transportation. Airline crew scheduling, map routing.

Physics. N-body simulation, particle collision simulation.

...


.

Why study algorithms?

Old roots, new opportunities

Study of algorithms dates at least to Euclid

Some important algorithms were discovered by undergraduates!

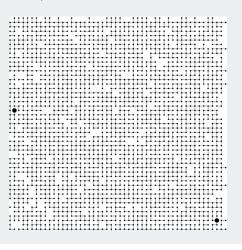
300 BC |

Why study algorithms?

For intellectual stimulation

For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing. - Francis Sullivan

An algorithm must be seen to be believed. - D. E. Knuth


7

Why study algorithms?

To be able solve problems that could not otherwise be addressed

Example: Network connectivity

[stay tuned]

Why study algorithms?

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific enquiry

$$\begin{split} E &= mc^2 \\ F &= ma \end{split} \qquad F = \frac{Gm_1m_2}{r^2} \\ \left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \Psi(r) &= E \, \Psi(r) \end{split}$$

20th century science (formula based)

21st century science (algorithm based)

Algorithms: a common language for nature, human, and computer.

- Avi Wigderson

8

Why study algorithms?

For fun and profit

9

The Usual Suspects

Lectures: Bob Sedgewick

• MW 11-12:20, CS 104

• Office hours W 3-5 at Cafe Viv in Frist

Course management (everything else): Dave Walker

Precepts: Mohammad Mahmoody Ghidary, Jimin Song, Dave Walker

Tuesdays.

- 1A: 12:30 Friend 109

- 1B: 12:30 CS 102

- 2: 1:30 CS 102

- 3: 3:30 CS 102

- Discuss programming assignments, exercises, lecture material.
- First precept meets tomorrow 2/6.

Need a precept time? Need to change precepts?

• see Prof. Walker (or mail dpw@cs.princeton.edu)

Check course web page for info

11

Why study algorithms?

- Their impact is broad and far-reaching
- Old roots, new opportunities
- To be able to solve problems that could not otherwise be addressed
- For intellectual stimulation
- They may unlock the secrets of life and of the universe
- For fun and profit

Why study anything else?

Coursework and Grading

7-8 programming assignments. 45%

- Due 11:55pm, starting Monday 2/12.
- Available via course website.

Weekly written exercises. 15%

• Due at beginning of Wednesday lecture, starting 2/7.

Available via course website.

Fxams.

Closed book with cheatsheet.

• Midterm. 15%

■ Final. 25%

Staff discretion. Adjust borderline cases.

Challenge for the bored. Determine importance of 45-15-15-25 weights

12

0

Resources (web)

Course content.

http://www.princeton.edu/~cos226

- syllabus.
- exercises.
- lecture slides.
- programming assignments (description, code, test data, checklists)

Course administration.

https://moodle.cs.princeton.edu/course/view.php?id=15

- due dates.
- programming assignment submission.
- grades.
- discussion groups

Booksites.

http://www.cs.princeton.edu/IntroCS http://www.cs.princeton.edu/IntroAlgsDS

- brief summary of content.
- code.
- links to web content.

1

Resources (books)

Algorithms in Java, 3rd edition.

- Parts 1-4. [sorting, searching]
- Part 5. [graph algorithms]

Introduction to Programming in Java.

- basic programming model
- elementary AofA and data structures

Algorithms in Pascal(!)/C/C++, 2nd edition.

- strings
- elementary geometric algorithms

Introduction to Algorithms and Data Structures. (in preparation)

