1. **Analysis of algorithms.**

 (a) There exists a constant $c > 0$ such that for any array of N elements, heapsort takes at most $cN \lg N$ steps (pairwise comparisons and exchanges).

 (b) Any comparison-based sorting algorithm must make $\Omega(N \log N)$ comparisons in the worst case.

 (c) 2 hours.

 (d) 1 hour.

2. **Algorithm analogies.**

 (a) Hamilton path

 (b) ternary search trie

 (c) Dijkstra's algorithm

 (d) ccw

 (e) binary heap

3. **String searching.**

(a) List the points in the order that they are considered for insertion into the convex hull.

\[J \rightarrow G \rightarrow H \rightarrow I \rightarrow E \rightarrow F \rightarrow D \rightarrow A \rightarrow B \]

(b) A set of points is convex if for any two points \(p_1 \) and \(p_2 \) in the set, all of the points on the line segment from \(p_1 \) to \(p_2 \) are also in the set.

5. BFS and DFS.

(a) DFS preorder: A B D E C F H G I
(b) DFS postorder: B H F C I G E D A
(c) BFS levelorder: A B D E I C F G H

6. Algorithm throwdown.

<table>
<thead>
<tr>
<th></th>
<th>Ternary search trie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-black tree</td>
<td>arbitrary Comparable keys</td>
</tr>
<tr>
<td></td>
<td>worst-case guarantee</td>
</tr>
<tr>
<td></td>
<td>faster for string keys</td>
</tr>
<tr>
<td></td>
<td>longest prefix match</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dijkstra’s algorithm</th>
<th>Bellman-Ford-Moore</th>
</tr>
</thead>
<tbody>
<tr>
<td>faster</td>
<td>handles negative weights</td>
</tr>
<tr>
<td>undirected graphs</td>
<td>negative cycle detection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Burrows-Wheeler</th>
<th>LZW compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>better compression ratio</td>
<td>faster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Red-black tree</th>
<th>Hash table</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance guarantee</td>
<td>(O(1)) average case</td>
</tr>
<tr>
<td>range search</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breadth-first search</th>
<th>Depth-first search</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>topological sort</td>
</tr>
<tr>
<td></td>
<td>strongly connected components</td>
</tr>
</tbody>
</table>
7. Minimum spanning tree.

(a) C-D B-C A-D E-F G-I E-G F-H D-I
(b) A-D C-D B-C D-I G-I E-G E-F F-H

8. Data compression and tries.

(a) c a g t aa ac ca aat ta aac ct
(b)

9. Linear programming.

maximize \[-26A - 30B - 20C\]
subject to:
\[A + B + 2C = 200\]
\[3A + 6B + 3C + S_1 = 45\]
\[9A + 2B + 4C - S_2 = 85\]
\[5A + 9B + 6C + S_3 = 95\]
\[-5A - 9B - 6C + S_4 = 95\]
\[A, B, C, S_1, S_2, S_3, S_4 \geq 0\]
10. **Reductions.**

Given an instance \(x_1, \ldots, x_N \) of **ElementDistinctness**, form the instance \((x_1, 0), \ldots, (x_N, 0)\) for **ClosestPair**. The elements in the **ElementDistinctness** problem are distinct if and only if the closest pair of points has distance strictly greater than 0.

Remark. There is an \(\Omega(N \log N) \) lower bound for **ElementDistinctness** in the quadratic decision tree model of computation. This reduction proves that there is also an \(\Omega(N \log N) \) lower bound for **ClosestPair**.

11. **Sorting and hashing.**

(a) Sort the \(N \) elements. Then, scan through the elements and check if any two adjacent elements are equal. Use heapsort to guarantee \(O(N \log N) \) performance, while using \(O(1) \) extra memory.

Note that quicksort does not guarantee \(O(N \log N) \) performance. Also, it uses \(\Omega(\log N) \) extra space for the function call stack.

(b) Create an empty set of elements. For each element of the \(N \) elements, check if it’s already in the set. If it is, you’ve found a duplicate; otherwise insert it into the set. Use a hash table to obtain \(O(1) \) average time per operation.

12. **Shortest path with landmark.**

(a) Compute the shortest path from \(v \) to \(x \) using Dijkstra’s algorithm. Then compute the shortest path from \(x \) to \(w \) using Dijkstra’s algorithm. Concatenate the two paths.

Correctness follows since all of the edge weights are positive: if the shortest landmark path used a non-shortest path from \(v \) to \(x \), we could shorten it by substituting a shortest path from \(v \) to \(x \). The same argument applies to the path from \(x \) to \(w \).

(b) Pre-compute the following two quantities. Here \(x \) is fixed, and we compute the quantity for every vertex \(u \).

- \(d(u, x) = \) length of the shortest path from \(u \) to \(x \).
- \(d(x, u) = \) length shortest path from \(x \) to \(u \).

Use Dijkstra’s algorithm (with \(x \) as the source) to compute \(d(x, u) \). This computes \(d(x, u) \) for every vertex \(u \) in \(O(E \log V) \) time. Use Dijkstra’s algorithm on the reverse graph \(\bar{G} \) (with \(x \) as the source) to compute \(\bar{d}(u, x) \).

To process a shortest landmark path query from \(v \) to \(w \), return \(\bar{d}(v, x) + d(x, w) \).