COS 226

Final Solutions

1. Analysis of algorithms.

- (a) There exists a constant c > 0 such that for any array of N elements, heapsort takes at most $cN \lg N$ steps (pairwise comparisons and exchanges).
- (b) Any comparison-based sorting algorithm must make $\Omega(N\log N)$ comparisons in the worst case.
- (c) 2 hours.
- (d) 1 hour.

2. Algorithm analogies.

- (a) Hamilton path
- (b) ternary search trie
- (c) Dijkstra's algorithm
- (d) ccw
- (e) binary heap

3. String searching.

4. Convex hull.

(a) List the points in the order that they are considered for insertion into the convex hull.

(b) A set of points is *convex* if for any two points p_1 and p_2 in the set, all of the points on the line segment from p_1 to p_2 are also in the set.

5. BFS and DFS.

- (a) DFS preorder: A B D E C F H G I
- (b) DFS postorder: B H F C I G E D A
- (c) BFS levelorder: A B D E I C F G H

6. Algorithm throwdown.

Red-black tree	Ternary search trie
arbitrary Comparable keys	faster for string keys
worst-case guarantee	longest prefix match

0	~	
faster		handles negative weights
undirect	ed graphs	negative cycle detection

Burrows-Wheeler	LZW compression
better compression ratio	faster

Red-black tree	Hash table
performance guarantee	O(1) average case
range search	

Breadth-first search	Depth-first search
shortest path	topological sort
	strongly connected components

7. Minimum spanning tree.

- (a) C-D B-C A-D E-F G-I E-G F-H D-I
- (b) A-D C-D B-C D-I G-I E-G E-F F-H

8. Data compression and tries.

- $(a) \ \ \mbox{c a g t}$ aa ac ca aat ta aac ct
- (b)

9. Linear programming.

\max imize	-26A	_	30B	—	20C										
subject to:	A	+	B	+	2C									=	200
	3A	+	6B	+	3C	+	S_1							=	45
	9A	+	2B	+	4C			_	S_2					=	85
	5A	+	9B	+	6C					+	S_3			=	95
	-5A	+	-9B	+	-6C							+	S_4	=	95
	A	,	B	,	C	,	S_1	,	S_2	,	S_3	,	S_4	\geq	0

10. Reductions.

Given an instance x_1, \ldots, x_N of ELEMENTDISTINCTNESS, form the instance $(x_1, 0), \ldots, (x_N, 0)$ for CLOSESTPAIR. The elements in the ELEMENTDISTINCTNESS problem are distinct if and only if the closest pair of points has distance strictly greater than 0.

Remark. There is an $\Omega(N \log N)$ lower bound for ELEMENTDISTINCTNESS in the quadratic decision tree model of computation. This reduction proves that there is also an $\Omega(N \log N)$ lower bound for CLOSESTPAIR.

11. Sorting and hashing.

(a) Sort the N elements. Then, scan through the elements and check if any two adjacent elements are equal. Use heapsort to guarantee $O(N \log N)$ performance, while using O(1) extra memory.

Note that quicks ort does not guaranteed $O(N\log N)$ performance. Also, it uses $\Omega(\log N)$ extra space for the function call stack.

(b) Create an empty set of elements. For each element of the N elements, check if it's already in the set. If it is, you've found a duplicate; otherwise insert it into the set. Use a hash table to obtain O(1) average time per operation.

12. Shortest path with landmark.

- (a) Compute the shortest path from v to x using Dijkstra's algorithm. Then compute the shortest path from x to w using Dijkstra's algorithm. Concatenate the two paths. Correctness follows since all of the edge weights are positive: if the shortest landmark path used a non-shortest path from v to x, we could shorten it by substituting a shortest path from v to x. The same argument applies to the path from x to w.
- (b) Pre-compute the following two quantities. Here x is fixed, and we compute the quantity for every vertex u.
 - $\overline{d}(u, x) = \text{length of the shortest path from } u \text{ to } x.$
 - d(x, u) =length shortest path from x to u.

Use Dijkstra's algorithm (with x as the source) to compute d(x, u). This computes d(x, u) for every vertex u in $O(E \log V)$ time. Use Dijkstra's algorithm on the reverse graph \overline{G} (with x as the source) to compute $\overline{d}(u, x)$.

To process a shortest landmark path query from v to w, return $\overline{d}(v, x) + d(x, w)$.