4.5 Small World Phenomenon

Stanley Milgram

Small world phenomenon. Six handshakes away from anyone.

An experiment to quantify effect. [Stanley Milgram, 1960s]

- . You are given personal info of another person.
- Goal: deliver message.
- . Restriction: can only forward to someone you know by first name.
- Outcome: message delivered with average of 5 intermediaries.

Introduction to Computer Science · Sedgewick and Wayne · Copyright © 2007 · http://www.cs.Princeton.EDU/IntroCS

Applications of Small World Phenomenon

Sociology applications.

- Looking for a job.
- Marketing products or ideas.
- Formation and spread of fame and fads.
- Train of thought followed in a conversation.
- Defining representative-ness of political bodies.
- Kevin Bacon game (movies, rock groups, facebook, etc.).

Other applications.

- Electronic circuits.
- Reference. Duncan J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press, 1999.
- Synchronization of neurons.Analysis of World Wide Web.
- Design of electrical power grids.
- Modeling of protein interaction networks.
- Phase transitions in coupled Kuramoto oscillators.
- Spread of infectious diseases and computer viruses.
- Evolution of cooperation in multi-player iterated Prisoner's Dilemma.

Graph Data Type

Application demands a new data type.

- Graph = data type that represents pairwise connections.
- Vertex = element.

3

Edge = connection between two vertices.

Graph Applications

graph	vertices	edges	
communication	telephones, computers	fiber optic cables	
circuits	gates, registers, processors	wires	
mechanical	joints	rods, beams, springs	
hydraulic	reservoirs, pumping stations	pipelines	
financial	stocks, currency	transactions	
transportation	street intersections, airports	highways, airway routes	
scheduling	tasks	precedence constraints	
software systems	functions	function calls	
internet	web pages	hyperlinks	
games	board positions	legal moves	
social relationship	people, actors	friendships, movie casts	
neural networks	neurons	synapses	
protein networks	proteins	protein-protein interactions	
chemical compounds	molecules	bonds	

Internet Movie Database

Input format. Movie followed by list of performers, separated by slashes.

				/				
	987)/DeBoy,							rbara
	le pianiste							
	997)Paxton,							
Titus (199	9)/Weisskop	of, Herman	in/Rhys, Ma	tthew/	/McEwan,	Geraldine	2	
To All a G	ood Night	(1980)/Geo	orge, Micha	el (II)/.	/Genti	le, Linda		
To Be or N	ot to Be (1	1942)/Vere	bes, Ernö	(I)//L	ombard,	Carole (I)		
To Be or N	ot to Be (1	1983)/Broc	oks, Mel (I)//Ban	croft, A	nne		
To Catch a	Thief (195	55)/París,	Manuel/Gr	ant, Cary	//Kel	ly, Grace		
To Die For	(1989)/Bor	nd, Steve	(I)/Jones,	Duane (I)//Ma	ddalena, d	Julie	
To Die For	(1995)/Smi	ith, Kurtw	ood/Kidman	, Nicole/	/Tucc	ci, Maria		
To Die Sta	nding (1990))/Sacha,	Orlando/An	thony, Ge	rald/	/Rose, Jan	nie	
To End All	Wars (2001	L)/Kimura,	Sakae/Ell	is, Greq	(II)/	/Sutherlar	nd, Kief	er
To Kill a	Clown (1972	2)/Alda, A	lan/Claver	ing, Eric	/Lambert	s, Heath/I	Danner,	Blvtl
	d Die in L.			2.				-

http://www.imdb.com/interfaces

Internet Movie Database

- Q. How to represent the movie-performer relationships?
- A. Use a graph.
- Vertex: performer or movie.
- Edge: connect performer to movie.

Graph API

Graph data type.

5

12

public class Graph (graph with String vertices)

 Graph()
 create an empty graph

 Graph(In in)
 read graph from input stream

 void
 addEdge(String v, String w)

 Iterable<String>
 adjacentTo(String v)

Graph Representation

(D)

Graph representation: use a symbol table.

• Key = name of vertex (e.g., performer or movie).

F

• Value = set of neighbors.

14

16

Set Data Type

Set data type. Unordered collection of distinct keys.

public	class	SET <kev< th=""><th>extends</th><th>Comparable></th></kev<>	extends	Comparable>

	SET()	create a set
boolean	isEmpty()	is the set empty?
void	add(Key key)	add key to the set
boolean	contains(Key key)	is key in the set?

Q. How to implement?

A. Identical to symbol table, but ignore values.

Graph Implementation

Graph Implementation (continued)

Second constructor. To read graph from input stream.

% more tiny.txt A/B/I B/A/F C/D/G/H D/C E/F/I F/B/E/G G/C/F/H H/C/G

Graph Client Warmup: Movie Finder

Performer and movie queries.

- Given a performer, find all movies in which they appeared.
- Given a movie, find all performers.

% java MovieFinder action.txt Bacon, Kevin Death Sentence (2007) River Wild, The (1994) Tremors (1990)

Roberts, Julia Blood Red (1989) I Love Trouble (1994) Mexican, The (2001) Ocean's Eleven (2001)

Tilghman, Shirley

% java MovieFinder mpaa.txt Bacon, Kevin Air I Breathe, The (2007) Air Up There, The (1994) Animal House (1978) Apollo 13 (1995) Balto (1995) Beauty Shop (2005) Big Picture, The (1989)

Sleepers (1996) Starting Over (1979) Stir of Echoes (1999) Telling Lies in America (1997) Trapped (2002) Tremors (1990) We Married Margo (2000) Where the Truth Lies (2005) White Water Summer (1987) Wild Things (1998) Woodsman, The (2004)

Kevin Bacon Game

Game. Given a performer, find (shortest) chain of movies connecting them to Kevin Bacon.

Performer	Was in	With
Kevin Kline	French Kiss	Meg Ryan
Meg Ryan	Sleepless in Seattle	Tom Hanks
Tom Hanks	Apollo 13	Kevin Bacon
Kevin Bacon		

19

21

Kevin Bacon Numbers

Computing Bacon Numbers

How to compute. Find shortest path in performer-movie graph.

Computing Bacon Numbers: Java Implementation

Path finder API.

public class PathFinder	(data type to compute shortest paths)
-------------------------	---------------------------------------

	PathFinder(Graph G, String s)	process graph G with source s
int	distanceTo(String v)	return shorest distance between s and v
void	<pre>showPath(String v)</pre>	print shortest path between s and v

Design principles.

- Decouple graph algorithm from graph data type.
- Avoid feature creep.

Computing Shortest Paths

To compute shortest paths:

- Source vertex is at distance 0.
- . Its neighbors are at distance 1.
- Their remaining neighbors are at distance 2.
- Their remaining neighbors are at distance 3.
- ...

22

24

Goal. Given a vertex s, find shortest path to every other vertex v.

BFS from source vertex ${\rm s}$

Put ${\rm s}$ onto a FIFO queue.

Repeat until the queue is empty: • dequeue the least recently added vertex v

Þ

 add each of v's unvisited neighbors to the queue, and mark them as visited.

Key observation. Vertices are visited in increasing order of distance from ${\rm s}$ because we use a FIFO queue.

public class PathFinder { private ST<String, String> prev = new ST<String, String>(); private ST<String, Integer> dist = new ST<String, Integer>(); public PathFinder(Graph G, String s) { Queue<String> q = new Queue<String>(); q.enqueue(s); dist.put(s, 0); while (!q.isEmpty()) { String v = q.dequeue();for (String w : G.adjacentTo(v)) { if (!dist.contains(w)) { q.enqueue(w); dist.put(w, 1 + dist.get(v)); prev.put(w, v); } } }

Breadth First Searcher: Preprocessing

Breadth First Searcher: Printing the Path

To print shortest path: follow prev[] from vertex v back to source s.

- Print v, prev[v], prev[prev[v]], ..., s.
- Ex: shortest path from C to A: C G F B A

key	prev	dist
A	-	0
в	A	1
С	G	4
D	с	5
Е	I	2
F	в	2
G	F	3
н	G	4
I	A	1

symbol tables

Running Time Analysis

Analysis. BFS scales to solve huge problems.

data File	movies	performers	edges	read input	build graph	BFS	show
G.txt	1,288	21,177	28K	0.26 sec	0.52 sec	0.32 sec	0 sec
PG13.txt	2,538	70,325	100K	0.31 sec	0.99 sec	0.72 sec	0 sec
action.txt	14,938	139,861	270K	0.72 sec	2.8 sec	2.0 sec	0 sec
mpaa.txt	21,861	280,624	610K	2.1 sec	7.5 sec	5.5 sec	0 sec
all.txt	285,462	933,864	3.3M	15 sec	56 sec	39 sec	0 sec
•							

1 60MB

data as of April 9, 2007

26

Data Analysis

Exercise. Compute histogram of Kevin Bacon numbers. Input. 285,462 movies, 933,864 actors.

More BFS applications.

- Particle tracking.
- . Image processing.
- . Crawling the Web.
- Routing Internet packets.
- ...

Extensions. Google maps.

31

Conclusions

Linked list. Ordering of elements. Binary tree. Hierarchical structure of elements.

Graph. Pairwise connections between elements.

Data structures.

- . Queue: linked list.
- Set: binary tree.
- Symbol table: binary tree.
- Graph: symbol table of sets.
- Breadth first searcher: graph + queue + symbol table.

Importance of data structures.

- Enables us to build and debug large programs.
- Enables us to solve large problems efficiently.