4.1, 4.2 Analysis of Algorithms

Analysis of algorithms. Framework for comparing algorithms and predicting performance.

Scientific method

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Universe = computer itself.

```
As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage
```


Analytic Engine (schematic)

Algorithmic Successes

N -body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N² steps.
- Barnes-Hut: $N \log N$ steps, enables new research.

. Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Applications. Statistics, databases, data compression, computational biology, computer graphics, scientific computing, ..

Hauser	
Hong	
Hsu	
Hayley	
Haskell	
Haskell	
Hanley	
Hornet	
	Hayes
Hong	
	Hornet
Hsu	

Insertion sort.

- Brute-force sorting solution.
- Move left-to-right through array
- Exchange next element with larger elements to its left, one-by-one

RS TPEXAMPIT
(E) $\mathrm{OR} \mathbf{R} \mathbf{S T X X}$
EORSTXMP
-
AEEELCMOPRSTX

```
public class Insertion {
    private static boolean less(double x, double y) {
        return (x < y);
    }
    private static void exch(double[] a, int i, int j) {
        double swap = a[i];
        a[i] =a[j];
        a[j] = swap
    }
    public static void sort(double[] a) {
        for (int i = 0; i < a.length; i++)
            for (int j = i; j > 0; j--) {
                f (less(a[j], a[j-1]))
                exch(a,j, j-1)
            else break;
            }
        }
    }
```

\}

Observe and tabulate running time for various values of N.

- Data source: N random numbers between 0 and 1.
- Machine: Apple $G 51.8 \mathrm{GHz}$ with 1.5 GB memory running OS X.
- Timing: Skagen wristwatch.

N	Comparisons	Time
5,000	6.2 million	0.13 seconds
10,000	25 million	0.43 seconds
20,000	99 million	1.5 seconds
40,000	400 million	5.6 seconds
80,000	1600 million	23 seconds

Insertion Sort: Prediction and Verification

Experimental hypothesis. \# comparisons ~ N ${ }^{2} / 4$.

Prediction. 400 million comparisons for $\mathrm{N}=40,000$.

Observations.

N	Comparisons	Time
40,000	401.3 million	5.595 sec
40,000	399.7 million	5.573 sec
40,000	401.6 million	5.648 sec
40,000	400.0 million	5.632 sec

Agrees.

Prediction. 10 billion comparisons for $\mathrm{N}=200,000$.

Observation. \square

Data analysis. Plot \# comparisons vs. input size on log-log scale.

Regression. Fit line through data points ~ Nb $\sigma^{\text {power lam }}$
$\sim a N^{b}$. $\swarrow^{\text {slope }}$ Hypothesis. \# comparisons grows quadratically with input size $\sim \mathrm{N}^{2} / 4$.

Insertion Sort: Validation

Number of comparisons depends on input family.

- Descending: N2/2.
- Random: N²/4.
- Ascending: N .

Experimental hypothesis

- Measure running times, plot, and fit curve
- Model useful for predicting, but not for explaining.

Theoretical hypothesis.

- Analyze algorithm to estimate \# comparisons as a function of:
- number of elements N to sort
- average or worst case input
- Model useful for predicting and explaining.

Critical difference. Theoretical model is independent of a particular machine or compiler; applies to machines not yet built.

Insertion Sort: Theoretical Hypothesis

Theoretical hypothesis.

Analysis	Comparisons	Stddev
Worst	$\mathrm{N}^{2} / 2$	-
Average	$\mathrm{N}^{2} / 4$	$1 / 6 \mathrm{~N}^{3 / 2}$
Best	N	-

Validation. Theory agrees with observations.

N	Actual	Predicted
40,000	401.3 million	400 million
200,000	9.9997 billion	10.000 billion

Worst case. (descending)

- Iteration i requires i comparisons.
- Total $=(0+1+2+\ldots+\mathrm{N}-1) \sim \mathrm{N}^{2} / 2$ compares.

\section*{| E | F | G | H | I | J | D | C | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 i}

Average case. (random)

- Iteration i requires i/2 comparisons on average.
- Total $=(0+1+2+\ldots+\mathrm{N}-1) / 2 \sim \mathrm{~N}^{2} / 4$ compares

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

Computer	Comparisons Per Second	Thousand	Million	Billion
laptop	10^{7}	instant	1 day	3 centuries
super	10^{12}	instant	1 second	2 weeks

Moore's law. Transistor density on a chip doubles every 2 years.
Variants. Memory, disk space, bandwidth, computing power per \$.

Mergesort

First Draft
of α
Report on the EDVAC

John von Neumann

Lesson. Need linear algorithm to keep pace with Moore's law.

Mergesort

Quadratic algorithms do not scale with technology.

- New computer may be $10 x$ as fast
- But, has $10 x$ as much memory so problem may be $10 \times$ bigger
- With quadratic algorithm, takes $10 x$ as long!

Software inefficiency can always outpace Moore's Law. Moore's Law isn't a match for our bad coding. - Jaron Lanier

Mergesort.

- Divide array into two halves.
- Recursively sort each half
- Merge two halves to make sorted whole.

[^0]

E	G	M	R	E	O	R	S	E	T	A	X	M	P	E	L

 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hlineE \& G \& M \& R \& E \& O \& R \& S \& \mathbf{A} \& \mathbf{E} \& \mathbf{T} \& \mathbf{X} \& M \& P \& E \& L

\hline

\hline$E|M| G|R| E|S| O|R| E|T| A|X| M|P| L \mid E ~$

\hline
\end{tabular}

E	G	M	R	E	O	R	S	A	E	T	\mathbf{X}	\mathbf{E}	\mathbf{L}	\mathbf{M}	\mathbf{P}

A E E E E G L M M O P R R

Mergesort: Java Implementation
Mergesort: Preliminary Hypothesis

```
public class Merge {
    private static boolean less(double x, double y)
        // as before
    private static void merge(double[] a, double[] aux, int l, int m, int r) {
        // see previous slide
    private static void sort(double[] a, double[] aux, int l, int r) {
        if (r <= l + 1) return;
        nt m=1 + (r - 1)/2
        sort(a, aux, l, m)
        sort(a, aux, m, r)
        merge(a, aux, l, m, r);
    }
    public static void sort(double[] a) {
        double[] aux = new double[a.length]
        double[] aux = new double[a
    }
}
```


Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.


```
private static woid merge(double[] a, double[] aux, int l, int m, int r)
    for (int k = 1; k < r; k++) aux[k] = a[k]
    int i = l, j = m,
    for (int k = l; k < r ; k++)
        if (i>=m)
        else if (j >= r)
        else if (less(aux[j], aux[i])) a[k] = aux[i++]
        else if (less(aux[j], aux[i])) a[k] = aux[j++]
    }
}
```

Experimental hypothesis. Number of comparisons ~ 20N.

Input Size

Experimental hypothesis. Number of comparisons ~ 20N.
Prediction. 80 million comparisons for $\mathrm{N}=4$ million.
Observations.

N	Comparisons	Time
4 million	82.7 million	3.13 sec
4 million	82.7 million	3.25 sec
4 million	82.7 million	3.22 sec

Prediction. 400 million comparisons for $\mathrm{N}=20$ million.
Observations.

N	Comparisons	Time
20 million	460 million	17.5 sec
50 million	1216 million	45.9 sec

Mergesort: Theoretical Hypothesis
Agrees.

Not quite.

Validation. Theory now agrees with observations.

Mergesort: Lesson

Lesson. Great algorithms can be more powerful than supercomputers.

Computer	Comparisons Per Second	Insertion	Mergesort
laptop	10^{7}	3 centuries	3 hours
super	10^{12}	2 weeks	instant

Analysis. To mergesort array of size N, mergesort two subarrays of size $N / 2$, and merge them together using $\leq N$ comparisons.
we assume N is a power of 2

$N=1$ billion

N	Actual	Predicted
10,000	120 thousand	133 thousand
20 million	460 million	485 million
50 million	1,216 million	1,279 million

Scientific method applies to estimate running time.

- Experimental analysis: not difficult to perform experiments.
- Theoretical analysis: may require advanced mathematics.
- Small subset of mathematical functions suffice to describe running time of many fundamental algorithms.
$\log _{2} \mathrm{~N}$

N

```
for (int i = 0; i < N; i++
```

N^{2}
$g(N / 2)$) return $g(N / 2)$
$g(N / 2)$
for (int $i=0 ; i<N ; i++)$
1
public static void f(int N)
public static void f(int N)
if (N == 0) return
if (N == 0) return
f(N-1)
f(N-1)
}
}

Order of growth
. Estimate running time as a function of input size N

- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don' \dagger care

Function	Description	When N doubles, running time
1	constant algorithm is independent of input size	does not change
$\log N$	logarithmic algorithm gets slightly slower as N grows	increases by a constant
N	linear algorithm is optimal for processing N inputs	doubles
$N \log N$	linearithmic algorithm scales to huge N	slightly more than doubles
N^{2}	quadratic algorithm is impractical for large N	quadruples
2^{N}	exponential algorithm is not usually practical	squares!

Summary

How can I evaluate the performance of my algorithm?
Computational experiments.

- Theoretical analysis.

What if it's not fast enough?

- Understand why.
- Buy a faster computer.
- Find a better algorithm in a textbook.
- Discover a new algorithm.

Attribute	Better Machine	Better Algorithm
Cost	\$\$\$ or more.	\$ or less.
Applicability	Makes "everything" run faster.	Does not apply to some problems.
Improvement	Quantitative improvements.	Dramatic qualitative improvements possible.

[^0]: input

 sort left

 | \mathbf{E} | \mathbf{E} | \mathbf{G} | \mathbf{M} | O | \mathbf{R} | \mathbf{R} | \mathbf{S} | T | E | X | A | M | P | L |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 sort right

 | E | E | G | M | O | R | R | S | \mathbf{A} | \mathbf{E} | \mathbf{E} | \mathbf{L} | \mathbf{M} | \mathbf{P} | \mathbf{T} | \mathbf{X} |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 merge
 A E E E E G L L M M O P R R S T X

