2.3 Recursion

Introduction to Computer Science . Sedgewick and Wayne • Copyright © 2007 - http://www.cs.Princeton.EDU/Introcs

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. $\operatorname{gcd}(4032,1272)=24$

$$
\begin{aligned}
4032 & =2^{6} \times 3^{2} \times 7^{1} \\
1272 & =2^{3} \times 3^{1} \times 53^{1} \\
\text { gcd } & =2^{3} \times 3^{1}=24
\end{aligned}
$$

Applications.

- Simplify fractions: 1272/4032 = 53/168
. RSA cryptosystem.

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?

- New mode of thinking.
- Powerful programming paradigm.

Many computations are naturally self-referential.

- Mergesort, FFT, gcd.
- Linked data structures.
- A folder contains files and other folders

Closely related to mathematical induction

Gcd. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

$\operatorname{gcd}(4032,1272)=\operatorname{gcd}(1272,216)$
$=\operatorname{gcd}(216,192)$
$=\operatorname{gcd}(192,24)$
$=\operatorname{gcd}(24,0)$
$=24$

Gcd. Find largest integer d that evenly divides into p and q.

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{lll}
p & \text { if } q=0 & \leftarrow \\
\text { base case } \\
\operatorname{gcd}(q, p \% q) & \text { otherwise }
\end{array} \quad \leftarrow \begin{array}{l}
\text { reduction step, } \\
\text { converges to base case }
\end{array}\right.
$$

Gcd. Find largest integer d that evenly divides into p and q.

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{lll}
p & \text { if } q=0 & \leftarrow \\
\begin{array}{ll}
p a s e ~ c a s e \\
\operatorname{gcd}(q, p \% q) & \text { otherwise }
\end{array} & \leftarrow & \text { reduction step, } \\
\text { converges to base case }
\end{array}\right.
$$

Java implementation.

Recursive Graphics

为

H-tree of order n

- Draw an H
and half the size
- Recursively draw 4 H -trees of order n -1, one connected to each tip

order 1

order 2

order 3

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

StdDraw.line (x1, y0, x1, y 1)
draw ($\mathrm{n}-1$, size $/ 2, \mathbf{x} 0, \mathrm{y} 0$); $\quad \leftarrow$ recursively draw 4 half-size Hs draw (n-1, size/2, x0, y1) draw ($n-1$, size $/ 2, \times 1, y 1$) draw (n-1, size/2, $x 1, y^{1}$)
\}
public static void main(String[] args) \{ int $\mathrm{n}=$ Integer. parseInt(args [0]); draw ($\mathrm{n}, .5, .5, .5$) ;
public class Htree
public static void draw(int n, double size, double \mathbf{x}, double y) $\{$
public static void draw
if ($\mathrm{n}==0$) return;
double $\mathbf{x} 0=\mathbf{x}-$ size $/ 2, x 1=x+$ size/2
double $\mathrm{y} 0=\mathrm{y}-$ size $/ 2, \mathrm{y}^{1}=\mathrm{y}+\operatorname{size} / 2 ;$
\}
\}

Towers of Hanoi

Towers of Hanoi Legend

cyclic wrap-around

Move $\mathrm{n}-1$ smallest discs right.

Move largest disc left.

Move $\mathrm{n}-1$ smallest discs right.

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

Edouard Lucas (1883)
Q. Is world going to end (according to legend)?
. 64 golden discs on 3 diamond pegs.

- World ends when certain group of monks accomplish task.
Q. Will computer algorithms help?

```
public class TowersOfHanoi {
    public static void moves(int n, boolean left) {
        if ( }\textrm{n}==0\mathrm{ ) return
        moves(n-1, !left)
        if (left) System.out.println(n + " left");
        else System.out.println(n + " right");
        moves(n-1, !left)
    }
```

 public static void main(String[] args) \{
 int \(\mathrm{N}=\) Integer.parseInt(args[0])
 moves (\(\mathbf{N}\), true) ;
 \}
 \}
moves (n , true) : move discs 1 to n one pole to the left
moves (n, false) : move discs 1 to n one pole to the right

Towers of Hanoi: Recursion Tree

Properties of Towers of Hanoi Solution

Remarkable properties of recursive solution.

- Takes $2^{n}-1$ steps to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Smallest disc always moves in same direction.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
- move smallest disc to right if n is even "
- make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for $n=64$ (at rate of 1 disc per second)
- Reassuring fact: any solution takes at least this long!

Divide-and-conquer paradigm.

- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

> Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.

- FFT for signal processing.
- Multigrid methods for solving PDEs.
- Adaptive quadrature for integration.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.

Midpoint displacement method for fractional Brownian motion.

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$

pinecone

cauliflower

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$
$F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}$

A natural for recursion?

```
public static long F(int n) {
    if ( }\textrm{n}==0\mathrm{ ) return 0
    if (n == 1) return 1;
        return F(n-1) + F(n-2)
}
```

spectacularly inefficient code

Observation. It takes a really long time to compute $\mathrm{F}(50)$.

Summary

How to write simple recursive programs?

- Base case, reduction step.
- Trace the execution of a recursive program

Use pictures.
Why learn recursion?

- New mode of thinking.
- Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Caveat. Can easily write remarkably inefficient programs.

$F(50)$ is called once $F(49)$ is called once $F(48)$ is called 2 times $F(47)$ is called 3 times $F(46)$ is called 5 times. $F(45)$ is called 8 times.
$F(1)$ is called $12,586,269,025$ times

F(50)

Binet's formula. $F(n)=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}}$
$=\left\lfloor\phi^{n} / \sqrt{5}\right\rfloor$
(${ }_{\phi=\text { golden ration } \sim 1.618}$

