
“It ain’t no good if it ain’t
snappy enough.”
(Efficient Computations)

COS 116: 2/20/2007
Adam Finkelstein

Administrative stuff
 Readings from course web page
 Feedback form on course web page
 New blogging assignment for this week. (See handout.)
 Reminder for this week’s lab:

Come with robots, cables.
 Make sure you understand pseudocode.

Come to lab with questions.
 Preview of upcoming labs:

 This week: controlling Scribbler (maze, …)
 Audio
 Scribbler art/music/dance
 Computer graphics
 …

Discussion

1. In what ways (according to Brian Hayes) is the
universe like a cellular automaton?

2. What different ways does Brooks describe for a robot
to “orient” itself? Did your experiments with Scribbler
give you insight into any of them?

Question:
How do we measure the
“speed” of an algorithm?

 Ideally, should be independent of:
machine
 technology

“Running time” of an algorithm

 Definition: the number of “elementary operations”
performed by the algorithm

 Elementary operations: +, -, *, /, assignment,
evaluation of conditionals

 “Speed” of computer: number of elementary steps
it can perform per second
 Simplified definition
 Do not consider this in “running time” of algorithm

Example: Find Min
 n items, stored in array A
 Variables are i, best
 best ← 1
 for i = 2 to n do

{
if (A[i] < A[best]) then
{ best ← i }

}

Uses at most 2(n – 1) + 1 operations
InitializationNumber of iterations

1 assignment & 1 comparison
= 2 operations per loop iteration

} (roughly = 2n)

Selection Sort

Do for i = 1 to n – 1
{

Find cheapest bottle among those numbered i to n

Swap that bottle and the i’th bottle.
}

 For the i’th round, takes at most 2(n – i) + 3
 To figure out running time, need to figure out how to sum

(n – i) for i = 1 to n – 1
…and then double the result.

About 2(n – i) steps

3 steps

Gauss’s trick : Sum of (n – i) for i = 1 to n – 1

S = 1 + 2 + … + (n – 2) + (n – 1)
+ S = (n – 1) + (n – 2) + … + 2 + 1

2S = n + n + … + n + n

2S = n(n – 1)

 So total time for selection sort is
≤ n(n – 1) + 3n

n – 1 times

(for large n, roughly = n2)

“20 Questions”:
Guess the number I have in mind.

 My number is an integer from 1 to n.

 You can only ask yes/no questions. What’s the first Q?

 Binary Search Algorithm:
First Question: “Is the number < n / 2?”

 Answer halves the range of possible numbers!

Repeat
Repeat

2

n1, 2, … , – 1, , + 1, … , n
2

n

2

n

Exercise: Express as pseudocode. How many times…?

 Brief detour: Logarithms (CS view)

 log2 n = K means 2K-1 ≤ n < 2K

 In words: K is the number of times
you need to divide n by 2 in order to
get a number ≤ 1

n=8388608n= 1048576n= 1024n= 8

703687441776641099511627776104857664n2

8388608104857610248n

2320103log2 n

John Napier

Binary search and binary
representation of numbers
 Say we know 0 ≤ number < 2K

Is 2K / 2 ≤ number < 2K?

No Yes

Is 2K / 4 ≤ number < 2K / 2?

No Yes

Is 2K × 3/8 ≤ number < 2K / 2?

No Yes

… …

0 2K

Binary representations (cont’d)

 In general, each number uniquely represented by a sequence of
yes/no answers to these questions.

 Correspond to paths down this “tree”:

Is 2K / 2 ≤ number < 2K?
No Yes

Is 2K / 4 ≤ number < 2K / 2?

No Yes

Is 2K / 8 ≤ number < 2K / 4?

No Yes

… …

Is 2K × 3/8 ≤ number < 2K / 2?

No Yes

… …

…

Binary representation of n
(the more standard definition)

n = 2k bk + 2k-1 bk-1 + … + 2 b2 + b1

where the b’s are either 0 or 1)

The binary representation of n is:
 n2 = bk bk – 1 … b2 b1

Efficiency of Effort:
A lens on the world
 QWERTY keyboard

 “UPS Truck Driver’s Problem” (a.k.a.
Traveling Salesman Problem or TSP)

 Handwriting Recognition

 CAPTCHA’s

 Quantum Computing

[Jim Loy]

Can n particles do 2n “operations” in a single step?
Or is Quantum Mechanics not quite correct?

SIAM J.
Computing
26(5) 1997

