
Chapter 2

Graphical models and approximate

posterior inference

In this chapter we review latent variable graphical models and exponential families.

We discuss variational methods and Gibbs sampling for approximate posterior infer-

ence, and derive general forms of these algorithms for a large subclass of models.

2.1 Latent variable graphical models

We use the formalism of directed graphical models to describe the independence as-

sumptions of the models developed in the subsequent chapters. A directed graphical

model provides a succinct description of the factorization of a joint distribution:

nodes denote random variables; edges denote possible dependence between random

variables; and plates denote replication of a substructure, with appropriate indexing

of the relevant variables.

Graphical models can be used to describe latent variable models. Latent variable

modeling is a method of developing complicated structured distributions, where the

data interact with latent or unobserved random variables. In the graphical model

notation, observed random variables are shaded, and latent random variables are

unshaded.

For example, the distribution on the real line in Figure 2.1 (Left) is the mixture

4



Figure 2.1: (Left) The density of a Gaussian mixture model with three mixture

components. (Right) The corresponding graphical model of N data from this density.

distribution formed by combining three unit-variance Gaussian distributions with

means µ1 = −2.5, µ2 = 4, and µ3 = 8. A data point is drawn by first choosing a

latent variable Z ∈ {1, 2, 3} from a multinomial, and then drawing the data point

from N (µz, 1). This example is illustrated as a graphical model in Figure 2.1 (Right).

The central task of latent variable modeling for data analysis is posterior infer-

ence, where we determine the distribution of the latent variables conditional on the

observations. Loosely, posterior inference can be thought of as a reversal of the gen-

erative process which the graphical model illustrates. For example, in the Gaussian

mixture with fixed means, we would like to determine the posterior distribution of the

indicator Z given a data point x. If x = 1, then the posterior p(Z |X = 1, µ1, µ2, µ3)

is (0.16, 0.83, 0.01).

Traditionally, the structure of the graphical model informs the ease or difficulty of

posterior inference. In the models of the subsequent chapters, however, inference is

difficult despite a simple graph structure. Thus, we resort to approximate posterior

inference, which is the subject of Section 2.2.

Typically, the parameters of the model are not observed (e.g., the means in the

Gaussian mixture), and part of the posterior inference problem is to compute their

posterior distribution conditional on the data. One option is to adopt the empirical

Bayes perspective (Morris, 1983; Kass and Steffey, 1989; Maritz and Lwin, 1989),
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and find point estimates of the parameters based on maximum likelihood. Such

estimates can be found, for example, with the expectation-maximization (EM) algo-

rithm (Dempster et al., 1977), or approximate variant of it (Neal and Hinton, 1999).

Alternatively, we may take a more fully Bayesian approach, placing a prior dis-

tribution on the parameters and computing a proper posterior distribution. This is

called hierarchical Bayesian modeling (Gelman et al., 1995) because it necessitates the

specification of a distribution of the parameters, which itself must have parameters

called hyperparameters.

In a hierarchical Bayesian model, we may still use the empirical Bayes methodol-

ogy, and find point estimates of the hyperparameters by maximum likelihood. This is

often sensible because it affords the advantages of exhibiting uncertainty on the pa-

rameters, while avoiding the unpleasant necessity of choosing a fixed hyperparameter

or further extending the hierarchy.

2.1.1 Exponential families

All the random variables we will consider are distributed according to exponential

family distributions. This family of distributions has the form:

p(x | η) = h(x) exp{ηT t(x)− a(η)}, (2.1)

where η is the natural parameter, t(x) are the sufficient statistics for η, and a(η) is

the cumulant generating function or log partition function:

a(η) = log

∫
h(x) exp{ηT t(x)}dx. (2.2)

The derivatives of a(η) are the cumulants of t(x). In particular, the first two deriva-

tives are:

a′(η) = Eη [t(X)] (2.3)

a′′(η) = Varη [t(X)] . (2.4)

The functions a(η) and h(x) are determined by the form and dimension of t(x).

For example, if x is real valued and t(x) = (x, x2), then the corresponding exponential
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Figure 2.2: Graphical model representation of iid data X1:N from p(x | η), where η

is itself distributed by p(η |λ) for a fixed hyperparameter λ. Computation in this

model is facilitated when Xn is in the exponential family, and η is distributed by the

conjugate prior.

family is Gaussian. If t(x) is a multidimensional vector with all zeros and a single

one, then the corresponding exponential family distribution is multinomial. An expo-

nential family for positive reals is the Gamma distribution, and an exponential family

for positive integers is the Poisson distribution.

See Brown (1986) for a thorough analysis of the properties of exponential family

distributions.

2.1.2 Conjugate exponential families

In a hierarchical Bayesian model, we must specify a prior distribution of the param-

eters. In this section, we describe a family of priors which facilitate computations in

such a model.

Let X be a random variable distributed according to an exponential family with

natural parameter η and log normalizer a(η). A conjugate prior of η, with natural

parameter λ, has the form:

p(η |λ) = h(η) exp{λT
1 η + λ2(−a(η))− a(λ)}.

The parameter λ has dimension dim(η) + 1 and the sufficient statistic is t(η) =

(η,−a(η)). We decompose lambda = (λ1,λ2) such that λ1 contains the first dim(η)

components and λ2 is a scalar. (Note that we overload a(·) to be the log normalizer

for the parameter in the argument.)
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The conjugate distribution is a convenient choice of prior, because the corre-

sponding posterior will have the same form. Consider the simple model illustrated

in Figure 2.2 where X1:N are independent and identically distributed (iid) variables

from the exponential family distribution p(xn | η), and p(η |λ) is the conjugate prior.

The posterior of η is:

p(η |λ, x1:N ) ∝ p(η |λ)p(x1:N | η)

∝ h(η) exp{λT
1 η + λ2(−a(η))}

N∏

n=1

exp{ηT t(xn)− a(η)}

= h(η) exp{(λ1 +
∑N

n=1 t(xn))T η + (λ2 + N)(−a(η))}, (2.5)

which is the same type of distribution as p(η |λ), with posterior parameters λ̂ =

(λ̂1, λ̂2):

λ̂1 = λ1 +
∑N

n=1 t(xn)

λ̂2 = λ2 + N.
(2.6)

The posterior, conditional on any amount of data, can be fully specified by the prior

parameters, the sum of the sufficient statistics, and the number of data points.

A second convenience of the conjugate prior is for computing the marginal distri-

bution p(x |λ) =
∫

p(x | η)p(η |λ)dη. If p(η |λ) is conjugate, then:

p(x |λ) = h(x)

∫
exp{ηT t(x)− a(η)}h(η) exp{λT

1 η + λ2(−a(η))− a(λ)}dη

= h(x)

∫
h(η) exp{(λ1 + t(x))T η + (λ2 + 1)(−a(η))}dη exp{−a(λ)}

= h(x) exp{a((λ1 + t(x),λ2 + 1))− a(λ)}. (2.7)

Thus, if the log normalizer is easy to compute then the marginal distribution will also

be easy to compute.

Finally, the conjugate prior facilitates computing the predictive distribution p(x |x1:N ,λ),

which is simply a marginal under the posterior parameters in Eq. (2.6).
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Example: Gaussian with Gaussian prior on the mean

Suppose the data are real vectors distributed according to a Gaussian distribution

with fixed inverse covariance Λ. The exponential family form of the data density is:

p(x | η) = exp

{
−1

2
(d log 2π − log |Λ|+ ηT Λ−1η) + ηT x− xT Λx

2

}
,

where:

h(x) = exp

{
−1

2
(d log 2π − log Λ)

}

a(η) = −ηT Λ−1η.

The conjugate prior is thus of the form:

p(η |λ) ∝ exp

{
λT

1 η − λ2

(
ηT Λ−1η

2

)}
,

which is a Gaussian with natural parameters λ1 and λ2Λ−1. Note that its covariance

is the scaled inverse covariance of the data Λ
λ2

. The log normalization is:

a(λ) = −1

2
log |λ2Λ

−1|+ λT
1 Λλ1

λ2
,

from which we can compute the expected sufficient statistics of η:

E [η] =
(Λ + ΛT )λ1

λ2

E [−a(η)] =
d

λ2
− λT

1 Λλ1

λ2
2

.

2.1.3 Exponential family conditionals

Conditional on all the other variables in a directed graphical model, the distribution of

a particular variable depends only on its Markov blanket, which is the set containing

its parents, children, and other parents of its children. To facilitate approximate

posterior inference, we consider models for which the conditional distribution of every

node given its Markov blanket is in an exponential family.

One possible substructure which meets this requirement is the conjugate-exponential

family model of Figure 2.2. Conditional on η, the distribution of Xn is in an expo-

nential family. Moreover, as we have shown above, the conditional distribution of

η | {λ, x1:N} is also in an exponential family.
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Figure 2.3: (Left) Graphical model representation of a K-mixture model. (Right) A

Bayesian K-mixture model.

A second possibility is for the distribution of a variable to be a mixture of ex-

ponential family distributions. This important substructure is illustrated in Fig-

ure 2.3 (Left), where η1:K are exponential family parameters and θ is a K-dimensional

multinomial parameter. The variables X1:N can be thought of as drawn from a two-

stage generative process: first, choose Zn from Mult(θ); then, choose Xn from the

distribution indexed by that value p(xn | ηzn).

Note that we represent multinomial variables using unit-basis vectors that have a

single component equal to one and all other components equal to zero. Thus, using

superscripts to denote components, the kth item is represented by a K-vector z such

that zk = 1 and z# = 0 for % $= k.

We confirm the conditional distributions of nodes Xn and Zn, given their re-

spective Markov blankets, are in the exponential family. First, by definition, the

conditional distribution p(xn | zn) is a member of the η-indexed exponential family.

Second, the conditional distribution p(zn |xn) is a multinomial:

p(zn |xn, θ, η1:K) ∝ p(zn | θ)p(xn | zn, η1:K),

which is also in the exponential family.

In the hierarchical mixture model of Figure 2.3 (Right), we can place the conjugate

prior on η1:K . The distribution of ηk | {z1:N , x1:N} remains in the exponential family

as a consequence of the analysis in Eq. (2.5). In particular, we condition only on
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those xn for which zk
n = 1.

By combining the substructures described above, we can build complicated fam-

ilies of distributions which satisfy the requirement that each node, conditional on

its Markov blanket, is distributed according to an exponential family distribution.

This collection of families contains many probabilistic models, including Markov ran-

dom fields, Kalman filters, hidden Markov models, mixture models, and hierarchical

Bayesian models with conjugate and mixture of conjugate priors.

2.2 Approximate posterior inference

The central computational challenge in latent variable modeling is to compute the

posterior distribution of the latent variables conditional on some observations. Ex-

cept in rudimentary models, such as Figures 2.2 and 2.3, exact posterior inference

is intractable and practical data analysis relies on good approximate alternatives.

In this section, we describe two general techniques for the class of graphical models

which satisfy the conditional exponential family restriction described above.

In the following, we consider a latent variable probabilistic model with parame-

ters η, observed variables x = x1:N and latent variables Z = Z1:M . The posterior

distribution of the latent variables is:

p(z1:M |x1:N , η) =
p(x1:N , z1:M | η)∫

p(x1:N , z1:M | η)dz1:M
.

Under the assumptions, the numerator is in the exponential family and should be

easy to compute. The denominator, however, is often intractable due to the nature

of z1:M . For example, if the latent variables are realizations of one of K values, then

this integral is a sum over KM possibilities. (E.g., this is true for the hierarchical

mixture model of Figure 2.3 Right.)

2.2.1 Gibbs sampling

Markov chain Monte Carlo (MCMC) sampling is the most widely used method of

approximate inference. The idea behind MCMC is to approximate a distribution by
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forming an empirical estimate from samples. We construct a Markov chain with the

appropriate stationary distribution, and collect the samples from a chain which has

converged or “burned in”.

The simplest MCMC algorithm is the Gibbs sampler, in which the Markov chain

is defined by iteratively sampling each variable conditional on the most recently sam-

pled values of the other variables. This is a form of the Metropolis-Hastings algo-

rithm (Metropolis et al., 1953; Hastings, 1970), and thus yields a chain with the

desired stationary distribution (Geman and Geman, 1984; Gelfand and Smith, 1990;

Neal, 1993).

In approximate posterior inference, the distribution of interest is the posterior

p(z |x, η). Thus, an iteration of the Gibbs sampler draws each latent variable zi

from p(zi | z−i,x, η). After the resulting chain has converged, we collect B samples

{z1, . . . , zB} and approximate the posterior with an empirical distribution:

p(z |x, η) =
1

B

B∑

b=1

δzb
(z).

This use of Gibbs sampling has revolutionized hierarchical Bayesian modeling (Gelfand

and Smith, 1990).

In the models described in Section 2.1.3, the every variable, conditional on its

Markov blanket, is distributed according to an exponential family distribution. Gibbs

sampling in this setting is thus straightforward, provided we can easily compute the

conditional exponential family parameter for each variable.1

2.2.2 Mean-field variational methods

Variational inference provides an alternative, deterministic methodology for approx-

imating likelihoods and posteriors in an intractable probabilistic model (Wainwright

and Jordan, 2003). We first review the basic idea in the context of the exponential

family of distributions, and then turn to its application to approximating a posterior.

1In fact, Gibbs sampling is so straightforward in this case, that one can automatically gener-

ate Gibbs sampling code from a graph structure and parameterization using the popular BUGS

package (Gilks et al., 1996).
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Consider the η-indexed exponential family distribution in Eq. (??) and recall the

cumulant generating function a(η):

a(η) = log

∫
exp{ηT t(z)}h(z)dz.

As discussed by Wainwright and Jordan (2003), this quantity can be expressed vari-

ationally as:

a(η) = sup
µ∈M

{ηT µ− a∗(µ)}, (2.8)

where a∗(µ) is the Fenchel-Legendre conjugate of a(η) (Rockafellar, 1970), and M is

the set of realizable expected sufficient statistics : M = {µ : µ =
∫

t(z)p(z)h(z)dz, for some p}.

There is a one-to-one mapping between parameters η and the interior of M (Brown,

1986). Accordingly, the interior of M is often referred to as the set of mean parame-

ters.

Let η(µ) be a natural parameter corresponding to the mean parameter µ ∈ M;

thus Eη [t(Z)] = µ. Let q(z | η(µ)) denote the corresponding density. Given µ ∈M,

a short calculation shows that a∗(µ) is the negative entropy of q:

a∗(µ) = Eη(µ) [log q(Z | η(µ))] . (2.9)

Given its definition as a Fenchel conjugate, the negative entropy is convex.

In many models of interest, a(η) is not feasible to compute because of the com-

plexity of M or the lack of any explicit form for a∗(µ). However, we can bound a(η)

using Eq. (2.8):

a(η) ≥ µT η − a∗(µ), (2.10)

for any mean parameter µ ∈M. Moreover, the tightness of the bound is measured

by a Kullback-Leibler divergence expressed in terms of a mixed parameterization:

D(q(z | η(µ)) || p(z | η)) = Eη(µ) [log q(z | η(µ))− log p(z | η)]

= η(µ)T µ− a(η(µ))− ηT µ + a(η)

= a(η)− ηT µ + a∗(η(µ)). (2.11)

Mean-field variational methods are a special class of variational methods that

are based on maximizing the bound in Eq. (2.10) with respect to a subset Mtract
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of the space M of realizable mean parameters. In particular, Mtract is chosen so

that a∗(η(µ)) can be evaluated tractably and so that the maximization over Mtract

can be performed tractably. Equivalently, given the result in Eq. (2.11), mean-field

variational methods minimize the KL divergence D(q(z | η(µ)) || p(z | η)) with respect

to its first argument.

If the distribution of interest is a posterior, then a(η) is the log likelihood. Consider

in particular a latent variable probabilistic model with hyperparameters η, observed

variables x = {x1, . . . , xN}, and latent variables z = {z1, . . . , zM}. The posterior can

be written as:

p(z |x, η) = exp{log p(z,x | η)− log p(x | η)}, (2.12)

and the bound in Eq. (2.10) applies directly. We have:

log p(x | η) ≥ Eq [log p(x,Z | η)]− Eq [log q(Z)] . (2.13)

This equation holds for any q via Jensen’s inequality, but, as our analysis has shown,

it is useful specifically for q of the form q(z | η(µ)) for µ ∈Mtract.

A straightforward way to construct tractable subfamilies of exponential family dis-

tributions is to consider factorized families, in which each factor is an exponential fam-

ily distribution depending on a so-called variational parameter. In particular, let us

consider distributions of the form q(z |ν) =
∏M

i=1 q(zi | νi), where ν = {ν1, ν2, ..., νM}

are variational parameters. Using this class of distributions, we simplify the likelihood

bound using the chain rule:

log p(x | η) ≥ log p(x | η)+
M∑

m=1

Eq [log p(Zm |x, Z1, . . . , Zm−1, η)]−
M∑

m=1

Eq [log q(Zm | νm)] .

(2.14)

To obtain the best approximation available within the factorized subfamily, we now

wish to optimize this expression with respect to νi.

To optimize with respect to νi, reorder z such that zi is last in the list. The

portion of Eq. (2.14) depending on νi is:

%i = Eq [log p(zi | z−i,x, η)]− Eq [log q(zi | νi)] . (2.15)
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Given our assumption that the variational distribution q(zi | νi) is in the exponential

family, we have:

q(zi | νi) = h(zi) exp{νT
i zi − a(νi)},

and Eq. (2.15) simplifies as follows:

%i = Eq

[
log p(Zi |Z−i,x, η)− log h(Zi)− νT

i Zi + a(νi)
]

= Eq [log p(Zi |Z−i,x, η)]− Eq [log h(Zi)]− νT
i a′(νi) + a(νi),

because Eq [Zi] = a′(νi). The derivative with respect to νi is:

∂

∂νi
%i =

∂

∂νi
(Eq [log p(Zi |Z−i,x, η)]− Eq [log h(Zi)])− νT

i a′′(νi). (2.16)

Thus the optimal νi satisfies:

νi = [a′′(νi)]
−1

(
∂

∂νi
Eq [log p(Zi |Z−i,x, η)]− ∂

∂νi
Eq [log h(Zi)]

)
. (2.17)

The result in Eq. (2.17) is general. Under the assumptions of Section 2.1.3, a

further simplification is achieved. In particular, when the conditional p(zi | z−i,x, η)

is an exponential family distribution:

p(zi | z−i,x, η) = h(zi) exp{gi(z−i,x, η)T zi − a(gi(z−i,x, η))},

where gi(z−i,x, η) denotes the natural parameter for zi when conditioning on the

remaining latent variables and the observations. This yields simplified expressions

for the expected log probability of Zi and its first derivative:

Eq [log p(Zi |Z−i,x, η)] = E [log h(Zi)] + Eq [gi(Z−i,x, η)]T a′(νi)− Eq [a(gi(Z−i,x, η))]

∂

∂νi
Eq [log p(Zi |Z−i,x, η)] =

∂

∂νi
Eq [log h(Zi)] + Eq [gi(Z−i,x, η)]T a′′(νi).

Using the first derivative in Eq. (2.17), the maximum is attained at:

νi = Eq [gi(Z−i,x, η)] . (2.18)

We define a coordinate ascent algorithm based on Eq. (2.18) by iteratively updating

νi for i ∈ {1, . . . , N}. Such an algorithm finds a local maximum of Eq. (2.13) by
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Proposition 2.7.1 of Bertsekas (1999), under the condition that the right-hand side of

Eq. (2.15) is strictly convex. Further perspectives on algorithms of this kind can be

found in Xing et al. (2003) and Beal (2003).

Notice the interesting relationship of this algorithm to the Gibbs sampler. In

Gibbs sampling, we iteratively draw the latent variables zi from the distribution

p(zi | z−i,x, η). In mean-field variational inference, we iteratively update the vari-

ational parameters of zi to be equal to the expected value of the parameter gi of

the conditional distribution p(zi | z−i,x, η), where the expectation is taken under the

variational distribution.2

2.3 Discussion

In this chapter, we described the directed graphical model formalism, and used it

to represent latent variable models for data analysis. For the class of models with

conditional exponential family distributions—for which conjugate priors and mixture

distributions are sufficient—we derived Gibbs sampling and mean-field variational

methods of approximate posterior inference.

Choosing an approximate inference technique is an important part of the data

analysis process. In this thesis, we typically prefer mean-field variational methods to

Gibbs sampling. Gibbs sampling does have some advantages over variational infer-

ence. It gives samples from the exact posterior, while estimates based on variational

methods incur an unknown bias. However, obtaining correct samples crucially de-

pends on the Markov chain’s convergence to its stationary distribution. This can be

a slow process, and assessing whether the chain has converged is difficult. Theoretical

bounds on the mixing time are of little practical use, and there is no consensus on

how to choose one of the several empirical methods developed for this purpose (?).

On the other hand, variational methods are deterministic and have a clear con-

vergence criterion given by the bound in Eq. (2.13). Furthermore, they are typically

2This relationship has inspired the software package VIBES (Bishop et al., 2003), which is a

variational version of the BUGS package (Gilks et al., 1996).
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faster than Gibbs sampling, as we will demonstrate empirically in Section 5.5. This is

particularly important in view of the goal of efficient data analysis of large collections

of text and images.
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