
Entropy based Nearest Neighbor Search in High Dimensions

Rina Panigrahy ∗

November 4, 2005

Abstract

In this paper we study the problem of finding the ap-
proximate nearest neighbor of a query point in the high
dimensional space, focusing on the Euclidean space. The
earlier approaches use locality-preserving hash functions
(that tend to map nearby points to the same value) to
construct several hash tables to ensure that the query
point hashes to the same bucket as its nearest neigh-
bor in at least one table. Our approach is different –
we use one (or a few) hash table and hash several ran-
domly chosen points in the neighborhood of the query
point showing that at least one of them will hash to the
bucket containing its nearest neighbor. We show that
the number of randomly chosen points in the neighbor-
hood of the query point q required depends on the en-
tropy of the hash value h(p) of a random point p at the
same distance from q at its nearest neighbor, given q
and the locality preserving hash function h chosen ran-
domly from the hash family. Precisely, we show that
if the entropy I(h(p)|q, h) = M and g is a bound on
the probability that two far-off points will hash to the
same bucket, then we can find the approximate near-
est neighbor in O(nρ) time and near linear Õ(n) space
where ρ = M/ log(1/g). Alternatively we can build a
data structure of size Õ(n1/(1−ρ)) to answer queries in
Õ(d) time. By applying this analysis to the locality pre-
serving hash functions in [17, 21, 6] and adjusting the
parameters we show that the c nearest neighbor can be
computed in time Õ(nρ) and near linear space where
ρ ≈ 2.06/c as c becomes large.

1 Introduction

In this paper we study the problem of finding the near-
est neighbor of a query point in the high dimensional
Euclidean space: given a database of n points in a d

∗Department of Computer Science, Stanford University, Stan-
ford, CA 94305. Supported in part by Stanford Graduate Fel-
lowship, NSF Grants EIA-0137761 and ITR-0331640, and a grant
from SNRC. rinap@cs.stanford.edu.

dimensional space, find the nearest neighbor of a query
point. This fundamental problem arises in several appli-
cations including data mining, information retrieval, and
image search where distinctive features of the objects are
represented as points in R

d [25, 27, 4, 7, 11, 10, 24, 8].
While the exact problem seems to suffer from the “curse
of dimensionality” (that is, either the query time or the
space requried is exponential in d [9, 23]), many effi-
cient techniques have been devised for finding an approx-
imate solution whose distance from the query point is at
most 1 + ε times its distance from the nearest neighbor.
[2, 20, 17, 21, 12]. The best known algorithm for find-
ing an (1 + ε)-approximate nearest neighbor of a query
point runs in time Õ(d log n) using a data structure of
size (nd)O(1/ε2). Since the exponent of the space require-
ment grows as 1/ε2, in practice this may be prohibitively
expensive for small ε. Indeed, since even a space com-
plexity of (nd)2 may be too large, perhaps it makes more
sense to interpret these results as efficient, practical al-
gorithms for c-approximate nearest neighbor where c is
a constant greater than one. Also, this is meaningful in
practice as typically when we are given a query point we
are really interested in finding a neighbor that is much
closer to the query point than the other points – the
query point (say an image) really represents the ‘same
object’ as the nearest neighbor we expect it to ‘match’
except that they may differ a little due to noise, or in-
herent errors in how well points represents their objects,
but it is expected to be quite far from the other points in
the database which basically represent ‘different objects’
from the query point.

For these parameters, Indyk and Motwani [17] provide
an algorithm for finding the c-approximate nearest neigh-
bor in time Õ(d+n1/c) using an index of size Õ(n1+1/c)
(while their paper states a query time of Õ(dn1/c), if d
is large this can easily be converted to Õ(d+n1/c) by di-
mension reduction); with a data structure of near linear
size, for the hamming space, the algorithms in [17, 21]
require a query time of nO(log c/c). To put this in perspec-
tive, finding a 2-approximate nearest neighbor requires
time O(

√
n) and an index of size O(n

√
n). The exponent

was improved slightly in [6] for c in [1, 10] – instead of
1/c it was β/c where β is a constant slightly less than 1
for c < 10; for example when c = 2 they can reduce the
exponent to approximately 0.42 implying a running time
of n0.42 and an index of size n1.42. Their simulation re-
sults indicate that while locality sensitive hashing gives
faster query time over other data structures based on
kd-tree, it also comes at the expense of using a lot more
space. They work with the following decision version
of the c-approximate nearest neighbor problem: given a
query point, and a parameter r for the distance to its
nearest neighbor, find any neighbor of the query point
that is that distance at most cr. It is well known that the
reduction to the decision version adds only a logarithmic
factor in the time and space complexity [17, 12].

In their formulation, they use a locality sensitive hash
function that maps points in the space to a discrete space
where nearby points out likely to get hashed to the same
value and far off points out likely to get hashed to differ-
ent values. Precisely, given parameter m that denotes an
upper bound on the probability that two points at most
r apart hash to the same bucket and g a lower bound
on the probability that two points more than cr apart
hash to the same bucket, they show that such a hash
function can find a c-approximate nearest neighbor in
Õ(d + nρ) time using a data structure of size Õ(n1+ρ)
where ρ = log(1/m)/log(1/g).

Their approach is to construct several hash tables to
ensure that the query point hashes to the same bucket as
its nearest neighbor in at least one table. Our approach
is different – we use one (or a few) hash table and hash
several randomly chosen points in the neighborhood of
the query point showing that at least one of them will
hash to the bucket containing its nearest neighbor. We
show that the number of randomly chosen points in the
neighborhood of the query point q required depends on
the entropy of the hash value h(p) of a random point p
at distance r from q, given q and the locality preserving
hash function h chosen randomly from the hash family.
Precisely, we show that if the entropy I(h(p)|q, h) = M
then we can find the approximate nearest neighbor in
Õ(d + nρ) time and near linear space Õ(n) where ρ =
M/ log(1/g). Here I(h(p)|q, h) denotes the entropy of
h(p) for a random point p at distance r from q given the
query point q and the specific hash function h from the
hash family in use. Alternatively we can build a data
structure of size Õ(n1/(1−ρ)) to answer queries in Õ(d)
time. By applying this analysis to the locality preserving
hash functions in [17, 21, 6] and adjusting the parameters
we show that the c nearest neighbor can be computed
in time nρ and near linear space where ρ ≈ 2.06/c as

c becomes large. For c = 2, ρ turns out to be about
n0.69. Note that I(h(p)|q, h) can be much lower than
I(h(p)|h(q)) – the latter corresponds to guessing h(p)
from h(q) and can lead to much slower algorithms. For
example in the Euclidean case an algorithm based on
the latter entropy would give a much higher value of ρ of
about Θ(log c/c), but using both h and q in conjunction
instead of just h(q) gives us the improved results. We
also show that if the points are chosen randomly from a
spherical gaussian distribution (section 4) the value of ρ
can be improved to about 1.47/c

A major advantage of such a small index of size Õ(n) is
that the entire index could possibly fit in main memory
making all memory accesses RAM accesses instead of the
much slower disk accesses. This suddenly increases the
number of possible accesses in the same query time by
a factor of 1000’s ! If there is a unique c-approximate
nearest neighbor – which may be typical in practice –
we argue that only 2 logn bits of storage are required in
the index for each point for large enough values of c. So
even with a million entries, we need only an index of size
5MB which is a trivial amount of RAM space in today’s
PCs.

Application of our techniques to the L1 norm does
not result in any improvement over the previous results
– with linear space we get a value of the value of ρ about
log(c)/c matching the bounds in [21, 17].

2 Results

• B(p, r): Let B(p, r) denote the sphere of radius r
centered at p a point in R

d; that is the set of points
at distance r from p.

• I(X): For a discrete random variable X , let
I(X) denote its information-entropy. For exam-
ple if X takes N possible values with probabili-
ties w1, w2, ..., wN then I(X) = I(w1, w2, .., wN) =∑

I(wi) =
∑−wi log wi

We will work with the following decision version of the
c-approximate nearest neighbor problem: given a query
point and a parameter r indicating the distance to its
nearest neighbor, find any neighbor of the query point
that is that distance at most cr. We will refer to this
decision version as the (r, cr)-nearest neighbor problem
and a solution to this as a (r, cr)-nearest neighbor. It
is well known that the reduction to the decision version
adds only a logarithmic factor in the time and space
complexity [17, 12].

We use locality preserving hash functions to map data-
base points into a hash table; a locality preserving hash
function is a random function from a hash family that
is likely to hash nearby points to the same value and far
off points to different values in a discrete space. To find
the approximate nearest neighbor of a query point, we
hash several randomly chosen points in the vicinity of
the query point and show that the approximate nearest
neighbor is likely to be present in one of these buckets.

We assume that the locality preserving hash function
has the following properties. Let M denote the entropy
I(h(p)|q, h) where p is a random point in B(q, r). Here
I(h(p)|q, h) denotes the entropy of h(p) given the query
point and the specific hash function from the hash family
in use. Let g denote an upper bound on the probabil-
ity that two points that are at least distance cr apart
will hash to the same bucket. Note that after a random
rotation and a random shift of the origin the nearest
neighbor of q appears like a random point on B(q, r).
Our algorithm is simple:

Construction of hash table: Pick k =
log n/ log(1/g) random hash functions h1, h2, .., hk. For
each point p in the database compute (after random
rotations and shifts for each hash function) H(p) =
(h1(p), h2(p), .., hk(p)) For each point p, store it in a ta-
ble at location H(p); use hashing to store only the the
nonempty locations. Use polylogn such randomly con-
structed hash tables.

Search Algorithm: To find a point at distance at
most cr from a query point q given that there is a neigh-
bor at distance at most r from q, pick Õ(nρ) random
points v from B(q, r) and search in the buckets H(v).
Here ρ = M/ log(1/g).

Theorem 1 With probability at least Õ(1), if the near-
est neighbor of the query point is at distance r, the search
algorithm finds a neighbor at distance at most cr. With
constant probability, no more than Õ(nρ) time is spent
searching points that are at a distance more than cr from
q.

By using polylogn hash tables our algorithms can be
made to succeed with high probability.

Alternatively, we show that our methods can be used
to construct a data structure of size Õ(n1/(1−ρ)) to an-
swer queries in Õ(d) time.

By applying this analysis to the locality preserving
hash functions from [21, 17, 6] and adjusting the pa-
rameters we show that the c nearest neighbor can be
computed in time Õ(nρ) and near linear space where
ρ ≈ 2.09/c as c becomes large. For c = 2, ρ turns out to
be about 0.69.

We start in section 3 with preliminaries including a
crucial lemma that states the number of random sam-
ples required for an arbitrary random variable to guess
its specific value. To simplify the exposition of the basic
principles, in section 4 we study a random instance of
the nearest neighbor problem in Euclidean space where
the points in the database are chosen randomly from a
spherical gaussian distribution. In section 5 we prove
the main theorems applicable to nearest neighbor search
for arbitrary point sets and derive algorithms for nearest
neighbor search in Euclidean space. Finally, in section 6
we discuss some computational issues relevant for prac-
tical implementation.

3 Preliminaries

First let us go through some notations.

• N(µ, r), η(x): Let N(µ, r) denote the normal dis-
tribution with mean µ and variance r2 with proba-
bility density function given by 1

r
√

2π
e−(x−µ)2/(2r2).

Let η(x) denote the function 1√
2π

e−x2/2.

• Nd(p, r): For the d-dimensional Euclidean space, for
a point p = (p1, p2, ..., pd) ∈ R

d let Nd(p, r) denote
the normal distribution in R

d around the point p
where the ith coordinate of a random point has the
normal distribution N(pi, r/

√
d) with mean pi and

variance r2/d. It is well known that this distribution
is spherically symmetric around p. A point from this
distribution is expected to be at root-mean squared
distance r from p; in fact, for large d its distance
from p is close to r with high probability (see for
example lemma 6 in [17])

• erf(x), Φ(x): The well-known error function
erf(x) = 2√

π

∫ x

0
e−x2

dx, is equal to the probabil-

ity that a random variable from N(0, 1/
√

2) lies
between −x and x. Let Φ(x) = 1−erf(x/

√
2)

2 . For
x ≥ 0, Φ(x) is the probability that a random vari-
able from the distribution N(0, 1) is greater than
x.

• Use α ≈ 1.303 to denote the constant:∫ ∞
0

I(Φ(x), 1 − Φ(x)) dx. The approximate value of
this integral has been computed using Matlab.

• Projection: We will use the following commonly
used projections that map points in Euclidean space
to real numbers. Let v denote a random vector
from the distribution Nd(0,

√
d). Then for any

point p ∈ R
d, the projection f(p) = v.p is distrib-

uted according to the normal distribution N(0, ||p||)
where ||p|| is the Euclidean distance of p from the
origin. Several such projections can be used to
project a point p into a low (say k) dimensional
space – for example, we can have the function
F (p) = (f1(p), f2(p), ..., fk(p)) for random choices
of projection functions f1, ..., fk.

The following are well known facts about such ran-
dom projections (they are direct consequences of the 2-
stability of the normal distribution [28]):

Fact 1 Under a random projection described above, for
any points p and q, F (p) − F (q) has the distribution
Nk(0, d(p, q)) where d(p, q) denotes the distance between
p and q. So the distribution of F (p)−F (q) depends only
on the distance d(p, q) and not on the positions of p and
q.

Fact 2 If r is random point on B(p, r), then F (r)−F (q)
has the distribution N(0,

√
(d(p, q)2 + x2)).

Guessing the value of a random variable: If a random
variable takes one of N discrete values with equal prob-
ability then a simple coupon collection based argument
shows that if we guess N random values at least one of
them should hit the correct value with constant proba-
bility. The following lemma states the required number
of samples for arbitrary random variables so as to ‘hit’ a
given random value of the variable. It essentially states
how many guesses are required to guess the value of a
random variable.

Lemma 2 Given an random instance x of a discrete
random variable with a certain distribution Ω with en-
tropy I, if O(2I) random samples are chosen from this
distribution at least one of them is equal to x with prob-
ability at least Ω(1/I).

Proof: Let w1, w2, ..., wN denote the probability distri-
bution Ω of the discrete space.

After s = 4.(2I + 1) samples the probability that x is
chosen is

∑
i wi[1 − (1 − wi)s].

If wi ≥ 1/s then the term in the sum is at least wi(1−
1/e). So if all the w′

is that are at least 1/s add up
to at least 1/I then the above sum is at least Ω(1/I).
Otherwise we have a collection of w′

is each of which is at
most 1/s and they together add up to more than 1−1/I.

But then by paying attention to these probabili-
ties we see that the entropy I =

∑
i wi log(1/wi) ≥∑

i wi log s ≥ (1 − 1/I) log s ≥ (1 − 1/I)(I + 2) =

I + 1 − 2/I. For I ≥ 4, this is strictly greater than
I, which is a contradiction. If I < 4 then the largest wi

must be at least 1/16 as otherwise a similar argument
shows that I =

∑
i wi log(1/wi) > wi log 16 = 4, a con-

tradiction; so in this case even one sample guesses x with
constant probability. �

Remark 1 While the above lemma assumes that the
random samples are chosen from the same distribution
from which x was derived, it is easy to extend it to the
case where random samples are chosen from a distribu-
tion slightly different from Ω, where say the probabilities
of corresponding events differ at most by a constant fac-
tor. For example the random samples could be chosen
from a distribution Ω′ = (w′

1, w
′
2, ..., w

′
N) where the in-

dividual probabilities differ from the ones in the distrib-
ution Ω = (w1, w2, ..., wN) by at most a constant multi-
plicative factor.

Remark 2 The above result is tight to the extent that
you cannot get a probability much better than Ω(1/I)
with O(2I) samples. There is a distribution with entropy
I so that even picking O(I2I) samples will hit x only
with probability O(log I/I). The distribution has one el-
ement with probability 4 log I/I and all others with equal
probability of O(1/(I22I)). The converse of the lemma
is not necessarily true. That is, there may be a distri-
bution with entropy I, and it may be sufficient to pick
much fewer than 2I samples - in fact just one sample –
to hit x is significant probability. Think of a distribution
where one element has probability 1/2 there are an expo-
nentially large number of remaining elements with tiny
uniform probability.

4 Random Instance in Euclidean

Space

We study a random instance of the problem where each
point is distributed according to Nd(0, 1/

√
2). The rea-

son we choose this distribution with a deviation of 1/
√

2
is because the expected distance between any two points
is 1; in fact, the distance is very close to 1 with high prob-
ability for large d. The query point is randomly chosen
around a certain point p with distribution Nd(0, 1/c);
the query point is at distance close to 1/c from its near-
est neighbor. The idea is to use the random projections
to a real line introduced earlier.

For two points separated by distance x, the distance in
the projection is distributed as N(0, x). We use k = log n
such projections. For each point p this gives a vector of

real numbers F (p) = (f1(p), f2(p), ..., fk(p)). For each
projection we produce a bit hi(p) = 0 if fi(p) < 0 and
1 otherwise, giving H(p) = (h1(p), h2(p), ..., hk(p)) This
hashes each point to an element of {0, 1}k. If k = log n,
the number of points in any one hash bucket (bin) is at
most log n with high probability.

Unfortunately, the query point q may not hash to
the same bucket as its nearest neighbor p. We will
try to guess H(p). It can be shown that the hash
values H(p) and H(q) are expected to differ in about
O(1/c) fraction of the bits. Based on this fact we may
need to search a large number of hash buckets, up to(

k
k/c

) ≈ nI(1/c,1−1/c) ≈ nO(log c/c) for large c.
Our essential observation is that this search space can

be pruned significantly by paying attention to the vector
F (q) from which H(q) is derived. If a coordinate fi(q)
is far from 0, it is less likely that hi(p) and hi(q) will
differ. In fact, if the absolute value, |fi(q)| = x then for
hi(p) and hi(q) to differ, the projection fi must map p
at least x away from q. This happens with probability at
most e−O(x2c2). This is exponentially small in c except
when x is comparable to 1/c which happens only with
probability about 1/c. So the search space of H(p) given
F (q) is much smaller than

(
k

k/c

)
. To estimate the size

of this search space precisely we compute the entropy
of H(p) given F (q). If this is M , then by lemma 2 the
search space is about O(2M).

Now, I(H(p)|F (q) ≤ ∑
I(hi(p)|fi(q)). Let us first

compute I(h(q)|f(p)) for one random projection.

Lemma 3 If p is a random point on B(0, 1/
√

2) and
q is a random point on B(p, 1/c), then for a random
projection I(h(q)|f(p)) = 1

c (1 − o(1))2α/
√

π ≈ 1.47/c

Proof: f(p) has the distribution N(0, 1), and f(q)−f(p)
has the distribution N(0, 1/c). So f(p) is at distance x
from 0 with probability density 2η(

√
2x) and in that case

the probability that f(q) is not on the same side as f(q)
is Φ(xc), so the entropy of h(q) is I(Φ(cx), 1 − Φ(cx)).
So

I(h(q)|f(p)) =
∫ ∞

0

2η(
√

2x)I(Φ(cx), 1 − Φ(cx)) dx

=
2
π

∫ ∞

0

e−x2
I(Φ(cx), 1 − Φ(cx)) dx

=
2
cπ

∫ ∞

0

e−(x/c)2)I(Φ(x), 1 − Φ(x)) dx

Now Φ(x) ≤ e−x2/2/x drops exponentially and for
large c, e−(x/c)2 drops slowly and is close to 1 until x

becomes comparable to c. So
∫ ∞
0

e−(x/c)2I(Φ(x), 1 −
Φ(x)) dx = (1 − o(1))

∫ ∞
0

I(Φ(x), 1 − Φ(x)) dx
�

Similarly it can be shown that I(h(p)|f(q)) =
I(h(q)|f(p)) ≈ 1.47/c (see appendix 7.1). So
I(H(p)|F (q)) ≤ 1.47k/c. But I(H(p)|F (q)) is the ex-
pected entropy of H(p) given F (q) for random choices
of q from B(p, 1/c). We will argue that for large d, even
for a fixed random choices of q and f , I(H(p)|F (q)) ≤
(1 + o(1))1.47k/c with high probability of 1− o(1): Ob-
serve that if d ≥ k the tuples (fi(q), fi(p)) are in-
dependent for the k different values of i; so the sum∑

I(hi(p)|fi(q)) is a sum of independent random vari-
ables in the range [0, 1] each with expectation 1.47/c.
By chernoff bounds, with high probability the sum will
be close to the mean. Even if d < k the terms are d-
wise independent and chernoff bounds may be applied
to d terms at a time; the high probability bound follows
if we assume d is large. This means by lemma 2, with
high probability of 1 − o(1), the search time is about
2(1+o(1))1.47k/c which is n(1+o(1))1.47/c.

The algorithm is as follows: For n(1+o(1))1.47/c itera-
tions: Search a random bucket from the distribution of
H(p) given F (q). Report the nearest neighbor among all
points searched.

Note that F (p) given F (q) has a normal distribution
(appendix 7.1) and so sampling with the same distribu-
tion as H(p) given F (q) is easy. This gives an algorithm
that takes near linear space and n(1+o(1))1.47/c time.

Remark 3 In the decision version of the nearest neigh-
bor problem we assumed that we know the exact distance
1/c to the nearest neighbor whereas in earlier works, 1/c
is only an upper bound on the distance to the nearest
neighbor. This can easily be fixed by guessing the exact
distance within a factor of 1 + ε where ε = O(1/ logn).
So H(p) has almost the same probability distribution as
the nearest neighbor of q. Then it follows from remark
1 that we can still apply lemma 2 to achieve the same
result. The search time only increases by a factor of
O(log n).

Remark 4 In our search data structure, we have used
a set of log n random hyperplanes to separate the n
points of the database. It can be shown that if the points
can be separated by ‘thick’ hyperplanes – say log n al-
most orthogonal hyperplanes of thickness at least t, then
I(h(p)|q, h) = e−O(c2/t2) implying a much faster search

time of ne−O(c2/t2)
if t is not too large. While such thick

hyperplanes exist for large dimensions when d ≥ n (see

appendix 7.2), for d << n a simple probabilistic calcula-
tion shows that such a set of thick separating hyperplanes
does not exist.

Note that for large d, we need not store the entire de-
scription of each point in the hash table but only its
O(log n) bit hash value. With high probability, this
should be sufficient to distinguish between points that
are 1/c close to the query point from points that are at
least 1 away.

Alternatively, we will show later in section 5 how this
technique can also be used to search in Õ(d) time and
n(1+o(1))/(1−1.47/c) space.

Although we have assumed that the points are chosen
randomly from a normal distribution, our results in this
section can be applied to any set of points whose pairwise
distances are about the same. This is true when points
are chosen randomly from other distributions such as
from a cube. In that case we can set the origin to be the
centroid of the point set. It can easily be shown that the
distance of any point from the centroid is about 1/

√
2 of

the interpoint distance.

5 Generalizing to arbitrary set of
points

5.1 Proof of Main theorems

We now generalize our techniques to arbitrary set of
points. Assume without loss of generality that the near-
est neighbor of the query point is at distance 1/c from the
query point, and we are interested in finding any point at
distance at most 1 from the query point. We use locality
preserving hash functions to map database points into a
hash table. To find the approximate nearest neighbor of
a query point, we hash several randomly chosen points
in the 1/c-neighborhood of the query point and show
that a (1/c, 1)-nearest neighbor is likely to be present
in one of these buckets. Let M denote the entropy
I(h(p)|q, h) = M where p is a random point in B(q, r).
Here I(h(p)|q, h) denotes the entropy of h(p) given the
query point and the specific hash function from the hash
family in use. Let g denote an upper bound on the prob-
ability that two points that are at least distance 1 apart
will hash to the same bucket. Pick k = log n/ log(1/g)
random hash functions h1, h2, .., hk (after random rota-
tions and shifts) and store each point p in the database in
the bucket H(p) = (h1(p), h2(p), .., hk(p)). Since many
buckets may be empty we use hashing to only store the
non-empty buckets.

First observe that after a random rotation and a ran-
dom shift of the origin, the nearest neighbor of q appears
like a random point p on B(q, 1/c) (this rotation and
shift may not be required as the hash functions may al-
ready perform them implicitly, see section 5.2). We will
show how to guess H(p) in time Õ(nM(1+1/ log n)/ log g).
Since we are only interested in running times where the
exponent of n is at most 1, this is Õ(nM/ log g).

Now I(H(p)|q, H) ≤ ∑k
1 I(hi(p)/q, hi) = kM . This

means on an average at most kM bits are required
to guess H(p) for a given set H of k random hash
functions. I(H(p)|q, H) also denotes the expected value
of I(H(p)|q) under random choices for fixing the set
H of hash functions. So for a fixed H , by Markov
inequality with at least probability 1/ logn, this entropy
is at most kM(1 + 1/ logn). Let us assume this is the
case. We are now ready to prove theorem 1.

Proof: [of theorem 1] For a given set H of k hash
functions lemma 2 implies that by picking 2kM(1+1/ log n)

random values with the same distribution as H(p),
at least one of them is equal to H(p) with at least
O(1/(kM)) probability. So with one hash table with
probability at least O(1/(kM)), we can find H(p) in time
2kM(1+1/ log n). Also picking random variables with the
distribution as H(p) is easy: just compute H(r) where
r is a random point from B(q, 1/c). So by lemma 2,
by searching O(2kM(1+1/ log n)) buckets obtained by ap-
plying H on randomly chosen points v in B(q, 1/c), with
probability at least O(1/(kM)) we find the nearest neigh-
bor p. Setting k = log n/ log(1/g) gives us the desired
result.

We also need to bound the number of far off points
visited over the O(2kM(1+1/ log n)) buckets searched. For
any point t that is at least distance 1 from q, the prob-
ability that it is visited in one bucket is at most gk.
So out of n such possible points the expected num-
ber of such points visited over all buckets is at most
ngkO(2kM(1+1/ log n)) = O(2kM(1+1/ log n)). So with
probability 1/2 at most twice as many far off points are
visited.

�

So in the end the algorithm is simple: Pick
O(2kM(1+1/ log n)) random points from B(q, 1/c). Search
the buckets these points hash to, limiting the total num-
ber of points visited at distance more than 1 from q to at
most O(2kM(1+1/ log n)). Repeat this for polylogn hash
tables and pick the nearest found neighbor.

Alternatively by storing p in buckets obtained by
applying H on 2kM(1+ε) randomly chosen points from

B(p, 1/c), we can have a small search time with slightly
more space. For a fixed random choice of H , by
Markov’s inequality the probability that I(H(q)|p) ex-
ceeds kM(1 + ε) is at most ε. By lemma 2 with prob-
ability at least O(1

kM(1+ε)) the query point will hash to
one of these buckets. Again how many far off points
can be present in this bucket? A given point t in the
database that is at distance at least 1 away from q will
be stored in 2kM(1+ε) buckets. These buckets are H(v)
for O(2kM(1+ε)) randomly chosen values v picked from
B(t, 1/c). Again if g denotes an upper bound on the
probability that one such random point v hashes to the
same bucket as q, then the probability that for one such
v, H(v) = H(q) is at most gk.

So over O(2kM(1+ε)) choices of v from B(t, 1/c), the
probability that any of these hash to the same bucket as
q is at most 2kM(1+ε)gk. Out of the n points in the data-
base the expected number of points that hash to the same
bucket as q is at most n2kM(1+ε)gk. We choose k so that
this is at most 1, giving k = log n/(log(1/g)−M(1+ ε)).
So by Markov’s inequality the probability that more than
2 points distance at least 1 from q hash to the same
bucket as q is at most 1/2. Again by using O(log n)
hash tables with high probability at least for one of
them not more than 2 far off points will be searched.
We limit the search in each bucket to at most 3 points.
Here the size of the hash table is O(n2kM(1+ε)) =
O(nlog(1/g)/(log(1/g)−M(1+ε))) = O(n1/(1−ρ(1+ε))). This
is O(n1/(1−ρ)) if ε = (1 − ρ)2/ log n. The total success
probability is O(ε

kM(1+ε)) = Õ((1 − ρ)3)
So we have proved the following theorem.

Theorem 4 With probability at least Õ((1 − ρ)3) if we
use k = log n/(log(1/g)−M(1 + ε)) projections, using a
hash table of size O(n1/(1−ρ)) the search algorithm suc-
ceeds for one hash table. With constant probability, no
more than Õ(1) points that are at a distance more than
1 from q are searched.

Again, by using polylogn hash tables the algorithm
can be made to succeed with high probability.

5.2 Choice of Hash functions for Euclid-
ean Space

We now apply our techniques on the locality preserving
hash functions for Euclidean space [21, 17, 6].

Instead of mapping f(p) to a bit we map it to an in-
teger. As in [17, 6], divide the real line into equal sized
intervals of size D and add a random shift. Precisely, the
point p is hashed to an integer h(p) = �(f(p) + β)/D� =

�(p.v + β)/D� where v is a random vector from the dis-
tribution Nd(0,

√
d) and β is a random number in [0, D].

H(p) = (h1(p), h2(p), ..., hk(p)). Essentially H divides
maps the space Rk into a grid of cubes of side length D.

Let ri(p) = (fi(p) + βi)modD. So R(p) =
(r1(p), r2(p), ..., rk(p)) denotes the relative position of
F(p) within its cube. R(p) is uniformly distributed in
[0, D]k. We will later set D to be about 3.

Now consider two points p and q that are distance
1/c apart. We will try to guess the relative position
of p’s subcube H(p) from q’s subcube H(q), given the
position R(q) of q in its subcube; that is we will try
to guess H(p) − H(q). Under the k random projec-
tions, F (p) − F (q) is randomly distributed according to
N(0, 1/c)k and is independent of the relative position
R(q) in its cube as the alignments of the intervals are in-
dependent of the projections fi. Time required to guess
H(p) − H(q) depends on the entropy of H(p) − H(q)
given R(q).

The following lemma computes I(hi(p) − hi(q)|ri(q))

Lemma 5 If p and q are distance 1/c apart then un-
der a random projection, I(h(p) − h(q)|r(q)) = 1

c (1 +
e−O(c2D2))2α/D where α =

∫ ∞
0 I(Φ(x), 1 − Φ(x)) dx

Proof: r(p) is a random value in [0, D]; so the prob-
ability density that it takes value x in [0, D] is 1/D.
h(p) − h(q) takes integral values, however, as c becomes
large, in terms of its entropy most of it is concentrated
at 1 and −1. Let Mi denote I(h(p)− h(q) = i|r(p)). We
are interested in the sum

∑
i Mi over all integers i. By

symmetry Mi = M−i. If r(p) = D−x, Pr[h(p)−h(q) =
1] = Φ(cx) − Φ(cx + cD)

So

M1 = I(h(p) − h(q) = 1|r(p))

=
1
D

∫ D

0

I(Φ(cx) − Φ(cx + cD)) dx

=
1

cD

∫ Dc

0

I(Φ(x) − Φ(x + cD)) dx

Again as Φ(x) drops exponentially, Φ(x + cD) is
negligible as compared to Φ(x), and further the in-
tegral to ∞ is not much more as than the integral
to Dc. So

∫ Dc

0
I(Φ(x) − Φ(x + cD)) dx = (1 −

e−O(c2D2))
∫ ∞
0

I(Φ(x)) dx
We have shown that M1 (and M−1) = (1 −

e−O(c2D2)) 1
cD

∫ ∞
0 I(Φ(x)) dx. Also Mi drops exponen-

tially with i since for a given value of r(p), Pr[h(p) −
h(q) = i] drops exponentially with a factor of e−(Dc)2/2.

M0 =
2
D

∫ D/2

0

I(1 − Φ(cx) − Φ(Dc − xc)) dx

=
2

cD

∫ Dc/2

0

I(1 − Φ(x) − Φ(Dc − x)) dx

Again as before we argue that in the range [0, Dc/4],
Φ(Dc−x) is negligible as compared to Φ(x), and beyond
that they are both negligible (e−O(c2D2)). This gives us,

M0 = (1 + e−O(c2D2)).
2

cD

∫ ∞

0

I(1 − Φ(x)) dx

So,
∑

i Mi = (1 + e−O(c2D2))(M−1 + M0 + M1) =
(1 + e−O(c2D2)) 2

cD

∫ ∞
0 I(Φ(x), 1 − Φ(x)) dx

�

The following lemma computes the probability g that
a point t at distance at least 1 from q hashes to the same
value h(t) as h(q) under one projection.

Lemma 6 g = 1 − 1
D

√
2
π (1 − e−D2/2)

Proof: If f(t) and f(q) are x apart then the probabil-
ity that they are separated by the interval boundaries
is x/D. A simple computation shows that the proba-
bility 1 − g that t and q hash to different values in one

projection is 2
∫ D

0 (x/D)η(x) dx = 1
D

√
2
π (1 − e−D2/2) �

Now since the function r is implicit in the description
of the function h, I(h(p)|q, h) ≤ I(h(p) − h(q)/r(q)). So
by theorem 1 we have:

Corollary 7 A c-approximate nearest neighbor in the
Euclidean space can be found in time Õ(nρ) using a data

structure of size Õ(n) where ρ = 2α/[Dlog(1− 1
D

√
2
π (1−

e−D2/2))]

Setting D = 3 gives the value of ρ = 2α/1.26 ≈ 2.06
Alternatively, using a data structure of size

Õ(n1/(1−ρ)), we can perform the search operation in Õ(d)
time: again, if d(t, q) > 1, the upper bound of g still
holds on the probability that a random point in B(t, 1/c)
hashes to the same value as q. This is because under the
random projections in use, f(r)− f(q) has the same dis-
tribution as that of a point at distance

√
(d(t, q)2+1/c2)

from q – clearly this distance is greater than 1.

Remark 5 Although the converse of lemma 2 is not al-
ways true – that is, it is not necessary that 2I(X) random
samples for a required to guess the value of a random
variable – it can be shown that for the specific hash func-
tions in consideration this is the case. That is, we need
2(1±o(1))kM/ log(1/g) random samples to guess the value
of H(p) given F (q). The essential idea is to consider
different values of f(q) in small increments of ε/c and
argue that the number of projections for which R(q) lie
in a small interval is close to the expected value with high
probability and then argue that we need close to the cor-
responding number of guesses for those set of intervals.

6 Implementation Discussion

We may assume that d is at most O(log n) as for larger
d we can use dimension reduction techniques that pre-
serve distances. Alternately we may use O(log n) lo-
cality preserving hash functions to represent a point
in the database. So we need not store the entire de-
scription of each point in the hash table but only its
O(log n) size hash value. This makes the size of each
hash entry small especially if we know that there is a
unique (r, cr)-approximate nearest neighbor. More suc-
cinct representations that use close to at most 2 logn
bits can be obtained by first embedding the points into
a high-dimensional hamming metric and then reducing
the number of dimensions to about O(log n) by XORing
suitable sized random subsets of the bits (see lemma 1
in [21]). If the nearest neighbor is unique then in the
final representation, each bit of the query and the near-
est neighbor will differ with probability at most 1/(2c)
whereas for other neighbors each bit position will dif-
fer with probability at least 1

2 (1 − 1/e). A simple and
tight probability calculation shows that for large enough
c, 2 logn bits suffice with high probability to distinguish
the nearest neighbor from the other points. Note that
the hash key H(p) need not be stored explicitly as it
suffices to hash this into an index for the hash array.

While we have included several polylogn factors in the
space complexity these are unlikely to be required in
practice. The first log n factor comes from Lemma 2
and is required only for arbitrary random variables. In
our case since the entropy is obtained by adding several
different independent random variables it is easy to show
that this is not required. The second log n comes from
the application of Markov inequality on the entropy dis-
tribution. This again can be eliminated by using say
Chebyshev or Chernoff bounds. The third one arises by
the crude application of Markov’s inequality to ensure

that not too many far off points are examined in each
hash table. Again we expect this will not be really re-
quired in practice. So for large enough constant c, if
we are searching for a unique (r, cr) nearest neighbor,
the total amount of space required in practice is close to
2n logn bits. Even for n equal to a million, this is the
only 5MB which is a tiny fraction of the main memory
space available on PC’s.

References

[1] P.K. Agarwal and J. Matousek. Ray shooting and
parametric search. In Proc. of 24th STOC, pp. 517–
526, 1992.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silver-
man, and A. Wu. An optimal algorithm for approxi-
mate nearest neighbor searching. In Proc. 5th ACM-
SIAM Sympos. Discrete Algorithms, pages 573–582,
1994.

[3] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower
bounds for high dimensional nearest neighbor search
and related problems. In Proceedings of the 31st
ACM Symposium on Theory of Computing, pages
312–321, 1999.

[4] T. Cover, P. Hart, Nearest neighbor pattern clas-
sification. IEEE Trans. Information Theory IT-
13(1967), pp. 21-27.

[5] Danny Dolev, Yuval Harari, and Michael Parnas.
Finding the neighborhood of a query in a dictionary.
In Proc. 2nd Israel Symposium on Theory of Com-
puting and Systems, pages 33–42, 1993.

[6] M. Datar, N. Immorlica, P. Indyk and V. Mir-
rokni. Locality-Sensitive Hashing Scheme Based
on p-Stable Distributions. In Proceedings of the
Symposium on Computational Geometry, 2004.
Talk is available at http://theory.lcs.mit.edu/ in-
dyk/brown.ps

[7] S. Deerwester, S. T. Dumais, T.K. Landauer, G.W.
Furnas, and R.A. Harshman. Indexing by latent se-
mantic analysis, Journal of the Society for Informa-
tion Science, 41(6), 391-407, 1990.

[8] L. Devroye and T.J. Wagner. Nearest neighbor meth-
ods in discrimination. Handbook of Statistics, vol-
ume 2, P.R. Krishnaiah and L.N. Kanal, editors,
North-Holland, 1982.

[9] D. Dobkin and R. Lipton. Multidimensional search
problems. SIAM J. Comput., 5:181-186, 1976.

[10] R. Fagin, Fuzzy Queries in Multimedia Database
Systems, Proc. ACM Symposium on Principles of
Database Systems (1998), pp. 1–10

[11] M. Flickner, H. Sawhney, W. Niblack, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, P. Yanker. Query by image
and video content: The QBIC system. Computer 28
(1995) 23–32

[12] S. Har-Peled. A replacement for voronoi diagrams
of near linear size. Proceedings of the Symposium on
Foundations of Computer Science, 2001.

[13] P. Indyk. High-dimensional computational geome-
try. Dept. of Comput. Sci., Stanford Univ., 2001.

[14] Piotr Indyk, Approximate Nearest Neighbor under
Frechet Distance via Product Metrics, ACM Sympo-
sium on Computational Geometry, 2002

[15] Piotr Indyk. Nearest neighbors in high-dimensional
spaces. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational
Geometry, chapter 39. CRC Press, 2rd edition, 2004.

[16] P. Indyk, R. Motwani, P. Raghavan, and S. Vem-
pala. Locality-preserving hashing in multidimen-
sional spaces. In Proceedings of the 29th ACM Sym-
posium on Theory of Computing, pages 618–625,
1997.

[17] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimen-
sionality. Proc. 30th Symposium on Theory of Com-
puting, 1998, pp. 604–613.

[18] Piotr Indyk and Nitin Thaper, Fast color image re-
trieval via embeddings. Workshop on Statistical and
Computational Theories of Vision (at ICCV), 2003.

[19] T. S. Jayram, S. Khot, R. Kumar, and Y. Rabani.
Cell-probe lower bounds for the partial match prob-
lem. In Proc. 35th Annu. ACM Symp. Theory Com-
put., pages 667–672, 2003.

[20] J. Kleinberg. Two algorithms for nearest-neighbor
search in high dimension. Proc. 29th Annu. ACM
Sympos. Theory Comput., pp. 599–608. 1997.

[21] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Effi-
cient search for approximate nearest neighbor in high

dimensional spaces. In Proc. of 30th STOC, pp. 614–
623, 1998.

[22] N. Linial and O. Sasson, Non-Expansive Hashing,
In Proc. 28th STOC (1996), pp. 509–517.

[23] S. Meiser. Point location in arrangements of hyper-
planes. Information and Computation, 106(2):286–
303, 1993.

[24] A. Pentland, R. W. Picard, and S. Sclaroff. Photo-
book: Tools for content-based manipulation of image
databases. In Proceedings of the SPIE Conference On
Storage and Retrieval of Video and Image Databases
(February 1994), vol. 2185, pp. 34–47.

[25] C. J. van Rijsbergen. Information Retrieval. Butter-
worths, London, United Kingdom, 1990.

[26] V. N. Vapnik and A. Y. Chervonenkis. On the uni-
form convergence of relative frequencies of events to
their probabilities. Theory Probab. Appl., 16:264–
280, 1971.

[27] G. Salton. Automatic Text Processing. Reading,
MA: Addison-Wesley, 1989

[28] V.M. Zolotarev, One-dimensional Stable Distribu-
tion. Translations of Mathematical Monographs 65,
American Mathematical Society, Providence, RI,
1986.

7 Appendix

7.1 I(h(p)|f(q)) for Random Instance

We will show that I(h(p)|f(q)) = I(h(q)|f(p)) for the
random instance of nearest neighbor search in Euclidean
space presented in section 4. p is a random point distrib-
uted as Nd(0, 1/

√
2), and q is distributed as Nd(p, 1/c).

We will compute the probability density that f(q) = y,
and conditioned on this the probability that h(p) 	= h(q).

After the random projection, f(q) is distributed
as N(0,

√
(1/2 + 1/c2)). Also, the probability den-

sity function of f(p) conditioned on f(q) = y is
Pr[f(p) = x]Pr[f(q) = y|f(p) = x]/Pr[f(q) =
y] = η(x

√
2)η((x − y)c)/η(y/

√
(1/2 + 1/c2)), which is

η(c2y/(2+c2), 1/
√

(2+c2)), the normal distribution with
mean c2y/(2 + c2) and deviation 1/

√
(2 + c2).

So given that f(q) = y, probability that h(p) 	= h(q)
is Φ(

√
(2+ c2)c2y/(2+ c2)) = Φ(cy/

√
(1+2/c2)). Since

the probability density function of f(q) is also given by
η(
√

2y/
√

(1+2/c2)), this results in the same calculation

as for I(h(p)|f(q)) except that the variables are scaled by
a factor of

√
(1+2/c2). So, I(h(q)|f(p)) = I(h(p)|f(q)).

7.2 Thick Hyperplanes

Let us consider the case when d is very large say at least
n logn. In that case we choose special hyperplanes that
better separate the set of points. The hyperplanes are
obtained as follows.

If v1, .., vn denote the points of the database, choose
ai randomly to be either +1 or −1 and set h =

∑
aivi.

Observe that h is a random variable from Nd(0,
√

d). So
if p is random point in B(q, r) then h.p − h.q is distrib-
uted as N(0, r) We will show that h separates the set of
points well. Indeed, look at h.vi = ai|vi|2 +

∑
ajvi.vj .

Note that vi.vj is very small, distributed as N(0, 1/
√

d).
So the sum is distributed as N(0,

√
(n/d)). |vi|2 is con-

centrated around 1 and at least 1 − ε with high prob-
ability (at least 1 − exp(−O(d))). Also the sum term
is at most ε with probability at least 1 − exp(O(log n)).
So with high probability over the log n projections for
all such h, |h.vi| > (1 − ε). Now, since the probability
that h.q 	= h.p is clearly at most exp(−O(c2)), we have
I(h(q)/f(p)) is O(c2exp(−O(c2))).

This argument can also be applied if d is as small as
n but deriving the appropriate hyperplanes may require
solving a system of equations. If a is the column vector
with entries as ai, then h is obtained by solving Ah = a,
where the rows of A are the point vectors vi.

