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Abstract
With the deeply-ingrained notion that disks can ef-

ficiently access only one dimensional data, current ap-
proaches for mapping multidimensional data to disk
blocks either allow efficient accesses in only one dimen-
sion, trading off the efficiency of accesses in other di-
mensions, or equally penalize access to all dimensions.
Yet, existing technology and functions readily available
inside disk firmware can identify non-contiguous logical
blocks that preserve spatial locality of multidimensional
datasets. These blocks, which span on the order of a
hundred adjacent tracks, can be accessed with minimal
positioning cost. This paper details these technologies,
analyzes their trends, and shows how they can be ex-
posed to applications while maintaining existing abstrac-
tions. The described approach can achieve the best pos-
sible access efficiency afforded by the disk technologies:
sequential access along primary dimension and access
with minimal positioning cost for all other dimensions.
Experimental evaluation of a prototype implementation
demonstrates a reduction of overall I/O time for multi-
dimensional data queries between 30% and 50% when
compared to existing approaches.

1 Introduction
Large, multidimensional datasets are becoming more
prevalent in both scientific and business computing. Ap-
plications, such as earthquake simulation and oil and gas
exploration, utilize large three-dimensional datasets rep-
resenting the composition of the earth. Simulation and
visualization transform these datasets into four dimen-
sions, adding time as a component of the data. Conven-
tional two-dimensional relational databases can be rep-
resented as multidimensional data using online analyt-
ical processing (OLAP) techniques, allowing complex
queries for data mining. Queries on this data are often
ad-hoc, making it difficult to optimize for a particular
workload or access pattern. As these datasets grow in
size and popularity, the performance of the applications
that access them growing in importance.

Unfortunately, storage performance for this type
of data is often inadequate, largely due to the one-
dimensional abstraction of disk drives and disk arrays.
Today’s data placement techniques are commonly predi-
cated on the assumption that multidimensional data must
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Figure 1: Notional seek curve of a modern disk drive. The seek
time profile of a modern disk drive consists of three distinct regions.
For cylinder distances less than C, the seek time is constant, followed
by a discontinuity. After this point of discontinuity, the seek time is
approximately the square root of the seek distance. For distances larger
than one third of the full seek distance, the seek time is a linear function
of seek distance. To illustrate the trend more clearly, the X axis is not
drawn to scale.

be serialized when stored on disk. Put another way, the
assumption is that spatial locality cannot be preserved
along all dimensions of the dataset once it is stored on
disk. Various data placement and indexing techniques
have been proposed over the years to optimize access
performance for various data types and query workloads,
but none solve the fundamental problem of preserving
locality of multidimensional data.

Some recent work has begun to chip away at this
assumption [13, 27], showing that locality in two-
dimensional relational databases can be preserved on
disk drives, but we believe that these studies have only
scratched the surface of what is possible given the char-
acteristics and trends of modern disks. In this paper, we
show that modern disk drives can physically preserve
spatial locality for multidimensional data. Our tech-
nique takes advantage of the dramatically higher den-
sities of modern disks, which have increased the number
of tracks that can be accessed within the time that it takes
the disk head to settle on a destination track. Any of the
tracks that can be reached within the settle time can be
accessed for approximately equal cost, which contrasts
with the standard “rule of thumb” of disk drive technol-
ogy that longer seek distances correspond to longer seek
times.

Figure 1 illustrates the basic concept using a canonical
seek curve of a modern disk drive. In contrast to conven-
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tional wisdom, seek time for small distances (i.e., fewer
than C cylinders, as illustrated in the figure) is often a
constant time equal to the time for the disk head to set-
tle on the destination cylinder. We have found that C is
not trivially small, but can be as high as 100 cylinders
in modern disks. This means that on the order of 100
disk blocks can be accessed for equal cost from a given
starting block. We refer to these blocks as being adja-
cent to the starting block, meaning that any of them can
be accessed for equal cost.

In this paper, we explain the adjacency mechanism,
detailing the parameter trends that enable it today and
will continue to enable it into the future. We describe the
design and implementation of a prototype disk array log-
ical volume manager that allows applications to identify
and access adjacent disk blocks, while hiding extraneous
disk-specific details so as to not burden the programmer.
As an example, we also evaluate a data placement tech-
nique that maps a three- and four-dimensional dataset
onto the logical volume, preserving physical locality di-
rectly on disk, and improving spatial query performance
by between 30% and 50% over existing data placements.

The rest of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 describes details
of the adjacency mechanism, how it can be implemented
in modern disks, and historic and projected disk param-
eter trends that enable the adjacency mechanism. Sec-
tion 4 analyzes data obtained from measurements of sev-
eral state-of-the art enterprise-class SCSI disks to show
how their characteristics affect the properties of the ad-
jacency mechanism. Section 5 shows how adjacency
can be expressed to applications without burdening them
with disk-specific parameters. Section 6 evaluates the ef-
ficiency of adjacent access on a prototype system using
microbenchmarks as well as 3D and 4D spatial queries.

2 Background and related work
Effective multidimensional data layout techniques are
crucial for the performance of a wide range of scien-
tific and commercial applications. We now describe
the applications that will benefit from our approach and
show that existing techniques do not address the prob-
lem of preserving the locality of multidimensional data
accesses.

2.1 Multidimensional datasets
Advances in computer hardware and instrumentation al-
low high-resolution experiments and simulations that
improve our understanding of complex physical phe-
nomena, from high-energy particle interactions to com-
bustion and earthquake propagation. The datasets in-
volved in modern scientific practice are massive and
multidimensional. Modern simulations produce data at
the staggering rate of multiple terabytes per day [21],

while high energy collision experiments at CERN are
expected to generate raw data of a petabyte scale [33].
Realizing the big benefits of the emerging data-driven
scientific paradigm heavily depends on our ability to ef-
ficiently process these large-scale datasets.

Simulation applications are a great example for the
storage and data management challenges posed by large-
scale scientific datasets. Earthquake simulations [2]
compute the propagation of an earthquake wave over
time, given the geological properties of a ground region
and the initial conditions. The problem is discretized
by sampling the ground at a collection of points and the
earthquake’s duration as a set of time-steps. The simula-
tor then computes physical parameters (like ground ve-
locity) for each discrete ground point and for each time
step. Post-processing and visualization applications ex-
tract useful information from the output.

The difficulties in efficiently processing simulation
output datasets lie in their volume and their multidi-
mensional nature. Storing one time-step of output re-
quires many gigabytes, while a typical simulation gen-
erates about 25,000 such time-steps [40]. An earthquake
simulation dataset is four-dimensional: it encodes three-
dimensional information (the 3D coordinates of the sam-
ple points) at each time-step. Post-processing or visual-
ization applications query the output, selecting the sim-
ulation results that correspond to ranges of the 4D co-
ordinate space. As an example of such range queries,
consider a “space-varying” query that retrieves the sim-
ulated values for all the ground points falling within a
given 3D region for only a single time-step. Similarly,
“time-varying” queries generate waveforms by querying
the simulated values for a single point, but for a range of
time-steps.

Unfortunately, naive data layout schemes lead to sub-
optimal I/O performance. Optimizing for a given class
of queries (e.g., the 3D spatial ranges), results in random
accesses along the other dimensions (e.g., the time di-
mension). Due to the absence of an appropriate disk lay-
out scheme, I/O performance is the bottleneck in earth-
quake simulation applications [40].

Organizing multidimensional data for efficient ac-
cesses is a core problem for several other scientific ap-
plications. High energy physics experiments will pro-
duce petabyte-scale datasets with hundreds of dimen-
sions [33]. Astronomy databases like the Sloan Digi-
tal Sky Survey [15] record astronomical objects using
several other attributes besides their coordinates (bright-
ness in various wavelengths, redshifts, etc.). The data
layout problem becomes more complex with an increas-
ing number of dimensions because there are more query
classes to be accommodated.

In addition to data-intensive science applications,
large-scale multidimensional datasets are typically used
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in On-Line Analytical Processing (OLAP) settings [14,
34, 39]. OLAP applications perform complex queries
on large volumes of financial transactions data in or-
der to identify sales trends and support decision-making.
OLAP datasets have large numbers of dimensions, cor-
responding, for example, to product and customer char-
acteristics, and to the time and geographic location of a
sale. Performance of complex multidimensional anal-
ysis queries is critical for the success of OLAP and
a large number of techniques have been proposed for
organizing and indexing multidimensional OLAP data
[7, 18, 32, 41].

2.2 Limitations of conventional placement
Efficient multidimensional data access relies on main-
taining locality so that “neighboring” objects in the mul-
tidimensional (logical) space are stored in “neighboring”
disk locations. Existing multidimensional layout tech-
niques are based on the standard linear disk abstraction.
Therefore, to take advantage of the efficient sequential
disk access, neighboring objects in the multidimensional
space must be stored in disk blocks with similar logi-
cal block numbers (LBNs). Space-filling curves, such as
the Hilbert curve [17], Z-ordering [22] and Gray-coding
[10] are mathematical constructs that map multidimen-
sional points to a 1D (linear) space, so that nearby ob-
jects in the logical space are as close in the linear order-
ing as possible.

Data placement techniques that use space-filling
curves rely on a simplified linear disk model, ignoring
low-level details of disk performance. The resulting
linear mapping schemes break sequential disk access,
which can no longer be used for scans along any dimen-
sion, only to ensure that range queries do not result in
completely random I/O. Furthermore, as analysis [20]
and our experiments suggest, the ability of space-filling
curves to keep neighbors in any dimensions physically
close on the disk deteriorates rapidly as the number of
dimensions increases. Our work revisits the simplistic
disk model and removes the need for linear mappings.
The resulting layout schemes maintain sequential disk
bandwidth, while providing efficient access along any
dimension, even for datasets with large dimensionality.

Besides space-filling curves, other approaches rely on
parallel I/O to multiple disks. Declustering schemes [1,
4, 5, 11, 19, 23] partition the logical multidimensional
space across multiple disks, so that range queries can
take advantage of the aggregate bandwidth available.

2.3 Limitations of indexing
The need to efficiently support multidimensional queries
has led to a large body of work on indexing. Multidi-
mensional indexes like the R-tree [16] and its variants
are disk-resident data structures that provide fast access

to the data objects satisfying a range query. With an ap-
propriate index, query processing requires only a frac-
tion of disk block accesses, compared to the alternative
of exhaustively searching the entire dataset. The focus
of multidimensional indexing research is on minimizing
the number of disk pages required for answering a given
class of queries [12].

Our work on disk layout for multidimensional
datasets differs from indexing. It improves the perfor-
mance of retrieving the data objects that match a given
input query and not the efficiency of identifying those
objects. For example, a range query on a dataset sup-
ported by an R-tree can result in a large number of data
objects that must be retrieved. Without an appropriate
data layout scheme, the data objects are likely to reside
in separate pages at random disk locations. After using
the index to identify the data objects, fetching them from
the disk will have sub-optimal, random access perfor-
mance. Multidimensional indexing techniques are inde-
pendent of the underlying data layout and do not address
the problem of maintaining access locality.

2.4 Storage-oriented approaches
Recently, researchers have focused on the lower level
of the storage system in an attempt to improve perfor-
mance of multidimensional queries [13, 27, 28, 38]. Part
of the work revisits the simple disk abstraction and pro-
poses to expand the storage interfaces so that the appli-
cations can be more intelligent. Schindler et al. [26] ex-
plored aligning accesses to disk drive track-boundaries
to get rid of rotational latency. Gorbatenko et al. [13]
and Schindler et al. [27] proposed a secondary dimen-
sion on disks, which they utilized to create a more flex-
ible database page layout [30] for two-dimensional ta-
bles. Others have studied the opportunities of building
two dimensional structures to support database applica-
tions with new alternative devices, such as MEMS-based
storage devices [28, 38]. The work described in this
paper challenges the underlying assumption of much of
this previous work by showing that the characteristics of
modern disk drives allow for efficient access to multiple
dimensions, rather than just one or two.

3 Multidimensional disk access
The established view is that disk drives can efficiently
access only one-dimensional data mapped to sequential
logical blocks. This notion is further reinforced by the
linear abstraction of disk drives as a sequence of fixed-
size blocks. Behind this interface, disks use various
techniques to further optimize for such sequential ac-
cesses. However, modern disk drives can allow for ef-
ficient access in more than one dimension. This funda-
mental change is based on two observations of techno-
logical trends in modern disks:
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1. Short seeks of up to some cylinder distance, C, are
dominated by the time the head needs to settle on a
new track;

2. Firmware features internal to the disk can identify
and thus access blocks that require no rotational la-
tency after a seek.

By combining these two observations, it is possible
to construct access patterns for efficient access to multi-
dimensional data sets despite the current linear abstrac-
tions of storage systems.

This section describes the technical underpinnings of
the mechanism that we exploit to preserve locality of
multidimensional data on disks. We begin by describing
some background of the mechanical operation of disks.
We then analyze the technology trends of the relevant
drive parameters, showing how the mechanism is en-
abled today and will continue to be enabled in future
disks. Lastly, we combine the two to show how the
mechanism itself works.

3.1 Disk background
Positioning. To service a request for data access, the
disk must position the read/write head to the physical lo-
cation where the data resides. First, it must move a set of
arms to the desired cylinder, in a motion called seeking.
Once the set of arms, each equipped with a distinct head
for each surface, is positioned near the desired track, the
head has to settle in the center of the track. After the
head is settled, the disk has to wait for the desired sector
to rotate underneath the stationary head before accessing
it. Thus, the total positioning time is the sum of the seek
time, settle time, and rotational latency components.

The dominant component of the total positioning time
depends on the access pattern (i.e., the location of the
previous request with respect to the next one). If these
requests are to two neighboring sectors on the same
track, no positioning overhead is incurred in servicing
the second one. This is referred to as sequential access.
When two requests are located on two adjoining tracks,
the disk may incur settle time and some rotational la-
tency. Finally, if the two requests are located at non-
adjoining tracks, the disk may incur a seek, settle time,
and possibly some rotational latency.

There are two possible definitions of adjoining tracks.
They can be either two tracks with the same radius on
different surfaces, or two neighboring tracks with dif-
ferent radii on the same surface. In the first case, dif-
ferent heads must be used to access the two tracks; in
the second case, the same head is used for both. In
both cases, the disk will have to settle the head above
the correct track. In the former case, the settle time is
incurred because (i) the two tracks on the two surfaces
may not be perfectly aligned or round (called run out),
(ii) the individual heads may not be perfectly stacked,
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Figure 2: Disk trends for 10,000 RPM disks. Notice the dramatic
increase in track density, measured in Tracks Per Inch (TPI), since
2000, while in the same period, head switch/settle time has improved
only marginally.

and/or (iii) the arms may not be stationary (as any non-
rigid body, they oscillate slightly). The former case is
referred to as head switch between tracks of the same
cylinder, while the latter is called a one cylinder seek.

Request scheduling. Disk drives use variants of
shortest positioning time first (SPTF) request sched-
ulers [29, 36], which determine the optimal order in
which outstanding requests should be serviced by mini-
mizing the sum of seek/settle time and rotational latency.
To calculate the positioning cost, a scheduler must first
determine the physical locations (i.e., �cylinder, head,
sector offset�) of each request. It then uses seek time
estimators encoded in the firmware routines to calculate
the seek time and calculates residual rotational latency
after a seek based on the offset of the two requests.

Layout. Disks map sequential LBNs to adjoining
sectors on the same track. When these sectors are ex-
hausted, the next LBN is mapped to a specific sector on
the adjoining track to minimize the positioning cost (i.e.,
head switch or seek to the next cylinder). Hence, there
is some rotational offset between the last LBN on one
track and the next LBN on the next track. Depending on
which adjoining track is chosen for the next LBN, this
offset is referred to as track skew or cylinder skew.

3.2 Disk technology trends
The key to our method of enabling multidimensional ac-
cess on disks is the relationship between two technology
trends over the last decade: (1) the time for the disk head
to settle at the end of a seek has remained largely con-
stant, and (2) track density has increased dramatically.
Figure 2 shows a graph of both trends for two families
of (mostly) 10,000 RPM enterprise-class disks from two
vendors, Seagate and Maxtor.

The growth of track density, measured in tracks per
inch (TPI), has been one of the strongest trends in disk
drive technology. Over the past decade, while settle time
has decreased only by a factor of 5 [3], track densities
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Figure 3: Atlas 10k III seek curve. First 80 cylinders.

experienced 35 fold increase, as shown in Figure 2. As
track density continues to grow while settle time im-
proves very little, more cylinders can be accessed in a
given amount of time. With all else being equal, more
data in the same physical area can be accessed in the
same amount of time. However, increasing track den-
sity negatively impacts the settle time. With larger TPI,
higher-precision controls are required, diminishing the
improvements in settle time due to other factors. There
are other factors that improve seek time such as using
smaller platters [3], but these affect long and full-strobe
seeks, whereas we focus on short-distance seeks.

In the past, the seek time for short distances between
one and, say, L cylinders was approximately the square
root of the seek distance [24]. However, the technol-
ogy trends illustrated in Figure 2 lead to seek times that
are nearly constant for distances of up to C cylinders,
and which then increase as before for distances above
C cylinders, as illustrated in Figure 1. Seeks of up to
C cylinders are dominated by the time it takes a disk
head to settle on the new track. These properties are
confirmed by looking at the seek curve measured from a
real disk, shown in Figure 3. The graph shows the seek
curve for a Maxtor Atlas 10k III, a 10,000 RPM disk in-
troduced in 2002. For this disk, C � 12 and settle time
is around 0.8 ms. For clarity, the graph shows seek time
for distances up to 80 cylinders, even though it has over
31,000 cylinders in total (see Table 1).

While settle time has always been a factor in posi-
tioning disk heads, the dramatic increase in bit density
over the last decade has brought it to the fore, as shown
in Figure 2. At lower track densities (i.e., for disks in-
troduced before 2000), only a single cylinder can be
reached within a constant settle time. However, with
the large increase in TPI since 2000, up to C can now
be reached. Section 4.3 examines seek curves for more
disks.

The increasing track density also influences how data
is laid out on the disk. While in the past, head switches
would be typically faster than cylinder switches, it is the
other way around for today’s disks. With increasing TPI,

settling on the correct track with a different head/arm
takes more time than simply settling on the adjoining
track with the same head/arm assembly.

Disks used to lay out data first across all tracks of the
same cylinder before moving to the next one, whereas
most recent disks “stay” on the same surface for a num-
ber of cylinders, say Clayout , and move inward before
switching to the next surface and going back. This map-
ping, which we term surface serpentine, also leverages
the fact that seeks of up to C cylinders take a (nearly)
constant amount of time. Put differently, the choice of
Clayout must ensure that sequential accesses are still ef-
ficient even when two consecutive LBNs are mapped to
tracks Clayout cylinders away. Figure 4 depicts the differ-
ent approaches to mapping LBNs onto disk tracks.

3.3 Adjacent disk blocks
The combination of rapidly increasing track densities
and slowly decreasing settle time leads to the seek curves
shown above in which one of C neighboring cylinders
can be accessed from a given starting point for equal
cost. Each of these cylinders is composed of R tracks,
and so, by extension, there are d � R�C tracks that can
be accessed from that starting point for equal cost. The
values of C and d are related very simply, but we differ-
entiate them to illuminate a subtle, but important, detail.

The value of C is a measure of how far the disk head
can move (in cylinders) within the settle period, while
the value of d is used to enumerate the number of adja-
cent blocks that can be accessed within those cylinders.
While each of these d tracks contain many disk blocks,
there is one block on each track that can be accessed im-
mediately after the head settles on the destination track,
with no additional rotational latency. We identify these
blocks as being adjacent to the starting block.

Figure 5 shows a drawing of the layout of adjacent
blocks on disk. For a given starting block, there are d
adjacent disk blocks, one in each of the d adjacent tracks.
For simplicity, we show a disk with only one surface, so,
in this case, R is one, and d equals C. During the settle
time, the disk rotates by a fixed number of degrees, W ,
determined by the ratio of the settle time to the rotational
period of the disk. For example, with settle time of 1 ms
and the rotational period of 6 ms (i.e., for a 10,000 RPM
disk), W � 60Æ. Therefore, all adjacent blocks have the
same angular (physical) offset from the starting block.

As settle time is not entirely deterministic (i.e., due
to external vibrations or thermal expansion), it is useful
to add some extra conservatism to W to avoid rotational
misses, which lead to long delays. Adding conservatism
to the value of W increases the number of tracks, d, that
can be accessed within the settle time at the cost of added
rotational latency. In practice, disks also add some con-
servatism to the best-case settle time when determining
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Model Year TPI Cylinders Surfaces Max. Cap. 1-cyl Seek Full Seek
Maxtor Atlas 10k II 2000 14200 17337 20 73 GB 1 ms 12.0 ms

Atlas 10k III 2002 40000 31002 8 73 GB 0.8 ms 11.0 ms
Atlas 10k IV 2003 61000 49070 8 147 GB 0.6 ms 12.0 ms
Atlas 10k V 2004 102000 81782 8 300 GB 0.5 ms 12.0 ms
Atlas 15k II 2004 unknown 48242 8 147 GB 0.5 ms 8.0 ms

Seagate Cheetah 4LP 1997 6932 6526 8 4.5 GB 1.24 ms 19.2 ms
Cheetah 36ES 2001 38000 26302 4 36 GB 0.9 ms 11.0 ms
Cheetah 73LP 2002 38000 29549 8 73 GB 0.8 ms 9.8 ms
Cheetah 10k.6 2003 64000 49855 8 147 GB 0.75 ms 10.0 ms
Cheetah 10k.7 2004 105000 90774 8 300 GB 0.65 ms 10.7 ms
Cheetah 15k.4 2004 85000 50864 8 147 GB 0.45 ms 7.9 ms

Table 1: Disk characteristics. Data taken from manufacturers’ specification sheets. The listed seek times are for writes.

Spindle

Platters

(a) L-0: traditional.

Spindle

Platters

(b) L-I: cylinder serpentine.

Spindle Clayout

Platters

(c) L-II: surface serpentine.

Figure 4: Layout mappings adopted by various disk drives.

cylinder and track skews for mapping LBNs to physi-
cal locations. For our example Atlas 10k III disk, the
cylinder and track skews are 61Æ and 68Æ, respectively,
or 1.031 ms and 1.141 ms, even though the measured
settle time is less than 0.8 ms. This extra buffer of about
14Æ ensures that the disk will not miss a rotation during
sequential access when going from one track to the next.

Note that depending on the mapping of logical blocks
(LBNs) to physical locations these blocks can appear to
an application either sequential or non-contiguous. The
choice is simply based on how a particular disk drive
does its low-level logical-to-physical mapping. For ex-
ample, a pair of sequential LBNs mapped to two dif-
ferent tracks or cylinders are still adjacent, according to
our definition, as are two specific non-contiguous LBNs
mapped to two nearby tracks.

Accessing successive adjacent disk blocks enables
semi-sequential disk access [13, 27], which is the
second-most efficient disk access method after pure se-
quential access. The delay between each access is equal
to a disk head settle time, which is the minimum me-
chanical positioning delay the disk can offer. However,
the semi-sequential access introduced previously utilizes
only one of the adjacent blocks for efficiently accessing
2D data structures. This work shows how to use up to d
adjacent blocks to improve access efficiency for multidi-
mensional datasets.

Adjacent
blocks

Starting
block

Disk 
head

direction
of rotation

W

Figure 5: Location of adjacent blocks. W = 67�5Æ and C � 3.

4 Determining d

The previous section defined the adjacency relationship
and identified the disk characteristics which enable ac-
cess to adjacent blocks. We now describe two methods
for determining the value of d. The first method we use
analyzes the extracted seek curves and drive parameters
to arrive at an estimate for C (and, by extension, d), and
the second method empirically measures d directly. We
evaluate and cross-validate both methods for a set of disk
drives from two different vendors.

4.1 Experimental setup

All experiments described here are conducted on a two-
way 1.7 GHz Pentium 4 Xeon workstation running
Linux kernel 2.4.24. The machine has 1024 MB of
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main memory and is equipped with one Adaptec Ul-
tra160 Wide SCSI adapter connecting the disks. For
our experiments, some of our disks have fewer platters
than the maximum supported, which are listed in Ta-
ble 1. Most enterprise drives are sold in families sup-
porting a range of capacities, in which the only differ-
ence is the number of platters in the drive. Specifically,
our Cheetah 36ES and Atlas 10k III have two platters,
while the Atlas 10k IV, Atlas 10k V, Cheetah 10k.7, and
Cheetah 15k.4 disks have only one platter. All but one
disk have the same total capacity of 36.7 GB; the Chee-
tah 10k.7 is a 73 GB disk. Requests are issued to the
disks via the Linux SCSI Generic driver and are timed
using the CPU’s cycle counter. All disks had their de-
fault cache mode page settings with both read and write
cache enabled.

4.2 Seek measurements
To determine the proper values of C and d based on the
disk’s characteristics, we need to measure its seek pro-
file. Since we do not have access to the disk firmware,
we have to determine it empirically. We first obtain map-
pings of each LBN to its physical location, given by the
�cylinder, head, sector� tuple. We use the SCSI address
translation mode page (0x40h) and MODE SELECT com-
mand. With a complete layout map, we can choose a
pair of tracks for the desired seek distance and measure
how long it takes to seek from one to the other.

To measure seek time, we choose a pair of cylin-
ders separated by the desired distance, issue a pair of
read commands to sectors in those cylinders and mea-
sure the time between their completions. We choose a
fixed LBN on the source track and successively change
the value of the LBN on the second track, each time is-
suing a pair of requests, until we find at the lowest time
between request completions. This technique is called
the Minimal Time Between Request Completions (MT-
BRC) [37]. The seek time we report is the average of
6 trials of MTBRC, each with randomly-chosen starting
locations spread across the entire disk. Note that the MT-
BRC measurement subtracts the time to read the second
sector as well as bus and system overheads [37].

4.3 Seek profile analysis
The first method we use to determine C (and thus d)
is based on analyzing the seek profile of a disk. Fig-
ure 6 shows seek profiles of the disk drives we evaluated
for small cylinder distances. Note that extracted profiles
have very similar shape, especially among drives from
the same vendor. The one-cylinder seek time is the low-
est, as expected. For distances of two and more cylin-
ders, the seek time rises rapidly for a few cylinders, but
then levels off for several cylinders before it experiences
a large increase between distance of i and i� 1 cylin-

ders. After this inflection point, which is C, seek time
rises gradually with increasing seek distance.

Note that the seek profile of some disks have more
than one “plateau” and, thus, several possible values of
C. When determining our value of C we chose the dis-
continuity point where seek times after the distance of
C are at least 80% more that the one-cylinder seek time,
while seek times of up to C are at most 60% larger than
the one-cylinder seek time. Note that this is just one
way of choosing the appropriate value of C. In prac-
tice, disk designers are likely to choose a value manu-
ally based on the physical disk parameters, just as they
choose the value of track and cylinder skew. In either
case, the choice of C is a trade-off between larger value
of d (which increases the number of potential dimen-
sions that can be accessed efficiently), and the efficiency
of accesses to individual adjacent blocks.

Using their measured seek curves, we now determine
suitable values of C for six recent disk drives. Recall that
C is the maximal seek distance in cylinders for which
positioning time is (nearly) constant. Table 2 lists the
value for each disk drive determined as the inflection
point/discontinuity in the seek profile. The other pair
of numbers in the table shows the percentage difference
between seek time for distance of 1 cylinder and the dis-
tance of respectively C and C+1 cylinders, highlighting
this discontinuity.

First, as expected, for more recent disk drives the
value of C increases. Second, the difference between
one-cylinder and C-cylinder seek times is about 50%.
And finally, the difference in seek time between a one-
and C+1-cylinder seek is significant: between 1.7� and
2� the value of the one-cylinder seek.

Once we have determined a value for C, we simply
multiply by the number of surfaces in the disk to arrive
at d. Figure 7 depicts the values of d for our disks. For
each of the disks, we use the value of C from Table 2 and
multiply it by the maximal number of surfaces each disk
can have. From Table 1, for all but the Cheetah 36ES,
R� 8. We plot the value of d as a function of year when
the particular disk model was introduced. For years with
multiple disks, we average the value of d across all an-
alyzed disk models. Confirming our trend analysis, the
value of d increases from 40 in year 2001 to almost 300
in year 2004. Recall that the value of d is proportional
to the number of surfaces in the disk, R, and that the
lower-capacity versions of the disk drives (such as those
in our experiments) will have smaller values of d than
those with more platters.

4.4 Measuring C directly
We now verify our previous method of determining C
by measuring it directly. We measure the value for d
rather than C, but, of course, C can easily be determined
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Figure 6: Measured seek profiles. Only the first 80 cylinders are shown.

1-cyl seek diff. vs.
Disk Model Year C C-cyl (C+1)-cyl
Atlas 10k III 2002 13 38% 76%
Atlas 10k IV 2003 12 52% 98%
Atlas 10k V 2004 21 55% 91%
Cheetah 36 ES 2001 10 59% 94%
Cheetah 10k.7 2004 49 44% 80%
Cheetah 15k.4 2004 42 55% 78%

Table 2: Estimated values of C based on seek profiles. The seek
times compare the extracted value of 1-cylinder seek and C-cylinder
seek. The last column lists the percentage increase between 1-cylinder
and C-cylinder seek time.

by dividing d by the number of surfaces in the disk, R.
We use the low-level layout model and the value of W
to identify those blocks that are adjacent to the starting
block. The experiment chooses a random starting block
and a destination block which is i tracks away and is
skewed by W degrees relative to the starting block.

We issue the two requests to the disk simultaneously
and measure the response time of each one individually.
If the difference in response time is equal to the settle
time of the disk, then the two blocks are truly adjacent,
and i � d. We increase i until the response time of the
second request increases significantly, beyond the rota-
tional period of the disk. This value of i is the maximum
distance that the disk head can move and still access ad-
jacent blocks without missing rotations, so d � i�1.

Adding conservatism to the rotational offset, W , pro-
vides a useful buffer because of nondeterminism in the
seek time. We found this to be especially true when ex-
perimenting with real disks, so our baseline values for
W include and aggressive value of 10Æ for conservatism.
Recall that the Atlas 10k III layout, for example, uses a
buffer of 14Æ for track and cylinder skews.

Larger conservatism can increase the value of d at
the expense of additional rotational latency and, hence,
lower semi-sequential efficiency. Conceptually, this is
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Figure 7: The trend in estimated value of d. The reported values
are based on our estimated values of C multiplied by the disk’s maxi-
mal number of surfaces. For years where we measured data from more
than one disk model, we report the average value of d.

analogous to moving to the right along the seek pro-
file past the discontinuity point. Larger values of d, in
turn, allow mappings of data sets with many more di-
mensions, while maintaining the same efficiency for ac-
cesses to all N�1 dimensions. Even though, more con-
servatism (and larger d) lowers the achieved semi-se-
quential bandwidth, it considerably increases the value
of d as illustrated in Figure 8.

Figure 8(a) shows the comparison between the value
of d based on our seek profile estimates of C reported
in Table 2 and our measured values using the above ap-
proach. For each disk, we show three bars. The first
bar, labeled “Estimated”, is the value of the estimated d.
The second and third bar, labeled “Measured ��10 Æ�”
and “Measured ��20Æ�”, show the measured value with
a conservatism of 10Æ and 20Æ, respectively, added to W .
the “Estimated” values are based on our measurements
from our disks, which have fewer platters that the mod-
els reported in Table 1. In contrast, the values reported
in Figure 7 are based on disks with maximal capacities.

4.5 Eliminating rotational latency

A key feature of adjacent blocks is that, by definition,
they can be accessed immediately after the disk head
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Disk Model W Extra d Access time
Atlas 10k III 68Æ 0Æ 25 0.95 ms

10Æ 60 1.00 ms
20Æ 100 1.25 ms

Cheetah 36ES 59 Æ 0Æ 20 0.85 ms
10Æ 35 1.00 ms
20Æ 45 1.20 ms

Cheetah 15k.4 70Æ 0Æ 18 0.85 ms
10Æ 80 0.85 ms
20Æ 130 0.85 ms

(b) Increasing conservatism increases d and access time.

Figure 8: Comparison of estimated and measured d.
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Figure 9: Quantifying access times. This graph compares the ac-
cess times to blocks located within C cylinders. For the first two disks,
the average rotational latency is 3 ms, for Cheetah 15k.4, it is 2 ms.

settles, without any rotational latency. To quantify the
benefits of eliminating rotational latency, we compare
adjacent access to simple nearby access within d tracks.
Without explicit knowledge of adjacency, accessing each
pair of nearby blocks will incur, on average, rotational
latency of half a revolution, in addition to the seek time
equivalent to the settle time. If these blocks are specifi-
cally chosen to be adjacent, then the rotational latency is
eliminated and the access is much more efficient.

As shown in Figure 9, adjacent access outperforms
nearby access by a factor of 4 thanks to the elimination
of all rotational latency Additionally, the access time for
the nearby case varies considerably due to variable rota-
tional latency, while the access time variability is much
smaller for the Adjacent case; it entirely due to the dif-
ference in seek time within the C cylinders, as depicted
by the error bars.

5 Expressing adjacency to applications

The previous sections detailed the principles behind ef-
ficient access to d adjacent blocks and demonstrated
that existing functions inside disk firmware (e.g., request
schedulers) can readily identify and access these blocks.
However, today’s interfaces do not expose these blocks
outside the disk. This section presents the method we

use for exposing adjacent blocks so that applications can
use them for efficient access to multidimensional data. It
first describes how individual disks can cleanly expose
adjacent blocks, and then shows how to combine such
information from individual disks comprising a logical
volume and expose it using the same abstractions.

5.1 Exposing adjacent blocks

To allow for efficient access, the linear abstraction of
disk drives sets an explicit contract between contiguous
LBNs. To extend efficient access to adjacent blocks, we
need to expose explicit relationships among the set of
adjacent LBNs that are non-contiguous.

To expose the adjacency relationships, we need to
augment the existing interface with one function, here
called �����������. Given an LBN, this function re-
turns a list of adjacent LBNs and can be implemented
similarly to a LBN-to-physical address translation, i.e.,
a vendor-specific SCSI mode page accessed with the
MODE SELECT command. The application need not
know the reasons how or why the returned d disk blocks
are adjacent, it just needs to have them identified through
the ����������� function.

A useful (conceptual) way to express the adjacency
relationships between disk blocks is by constructing ad-
jacency graphs, such as that shown in Figure 10. The
graph nodes represent disk blocks and the edges connect
blocks that are adjacent. The graph in the figure shows
two levels of adjacency: the root node is the starting
block, the nodes in the intermediate level are adjacent
to that block, and the nodes in the bottom level are ad-
jacent to the blocks in the intermediate level. Note that
adjacent sets of adjacent blocks (i.e., those at the bot-
tom level of the graph) overlap. For brevity, the graph
shows only the first 6 adjacent blocks (i.e., d � 6), even
though d is considerably larger for this disk, as described
in Section 4. With the concept of adjacent blocks, ap-
plications can lay out and access multidimensional data
with the existing 1D abstraction of the disk. This is pos-

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 233



FAST ’05: 4th USENIX Conference on File and Storage Technologies

0

1371 1927 2482 2920 3475 4717

2056 2611 3049 3604 4160 5414 5969 6525 7518 8074 8629

Figure 10: Adjacency graph for LBN 0 of Atlas 10k III. Only two levels adjacent blocks are shown. The LBNs are shown inside nodes.

sible through explicit mapping of particular points in the
data’s multidimensional space to particular LBNs identi-
fied by the disk drive.

5.2 Identifying adjacent blocks

Since current disk drives do not expose adjacent blocks
and we do not have access to disk firmware to make the
necessary modifications, we now describe an algorithm
for identifying them in the absence of the proper storage
interface functions. The algorithm uses a detailed model
of low-level disk layout borrowed from a storage sys-
tem simulator called DiskSim [8]. The parameters can
be extracted from SCSI disks by previously published
methods [25, 35, 37]. The algorithm uses two func-
tions that abstract the disk-specific details of the disk
model: ���	
����
��, which returns the physical angle
between the physical location of an LBN on the disk and
a “zero” position, and �������
���������	��
��,
which returns the first and the last LBN at the ends of
the track containing �
�.

For convenience, the algorithm also defines two pa-
rameters. First, the parameter T is the number of
disk blocks per track and can be found by calling
�������
���������	, and subtracting the low LBN
from the high LBN. Of course, the value of T varies
across zones of an individual disk, and will have to be
determined for each call to �����������. Second, the
parameter W defines the angle between a starting block
and its adjacent blocks. This angle can be found by
calling the ���	
�� function twice for two consecutive
LBNs mapped to two different tracks and computing the
difference; disks skew the mapping of LBNs on consec-
utive tracks by W degrees to account for settle time and
to optimize sequential access.

The ����������� algorithm, shown in Figure 11,
takes as input a starting LBN (�
�) and finds the adja-
cent LBN that is W degrees ahead and ���� tracks away.
Every disk block has an adjacent block within the d clos-
est tracks, so the entire set of adjacent blocks is found
by calling ����������� for increasing values of ����
from 1 to d.

�� Find an LBN adjacent to ��� and ���� tracks away ��
L :� �	
��
��	�
����� ����� :
�� Find the required skew of target LBN ��
������ ���� :� ��	
��	������ �W � ��� 360

�� Find the first LBN in target track ��
���� ��� :� ��� � ����� � T �
����� ����� :� �	

������ ����!	������ ����

�� Find the minimum skew of target track ��
��� ���� :� �	
��	������

�� Find the offset of target LBN from the start of target track ��
if ������� ���� � ��� ����� then
�""��� ���� :� ������ �������� ����

else
�""��� ���� :� ������ �������� �����360

end if

�� Convert the offset skew into LBNs ��
�""��� ���� :� ��""��� �����360��T
�	
 ��������""��� �����

�� Find the physical skew of ���, measured in degrees ��
A :� �	
��	������

�� Find the boundaries of the track containing ��� ��
�L� H� :� �	

������ ����!	������

T : Track length - varies across zones of the disk
W : Skew to add between adjacent blocks, measured in degrees

Figure 11: Algorithm for the �	
��
��	�
 function.

5.3 Logical volumes

So far, we have discussed how to expose adjacent blocks
to applications from a single disk drive. However, large
storage systems combine multiple disks into logical vol-
umes. From our perspective, a logical volume man-
ager (LVM) adds nothing more than a level of indirec-
tion through mapping of a volume LBN (VLBN) to the
LBNs of individual disks (DLBN). Given a set of ad-
jacent blocks, an LVM can choose an explicit grouping
of LBNs across all underlying k disks. The d VLBNs
exposed via ����������� are the adjacent blocks of
a particular disk’s DLBN mapped to a given VLBN by
the LVM. To an application, a multi-disk logical volume
will appear as a (bigger and faster) disk, whose adjacent
blocks set has cardinality d.
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Since existing disks do not implement the
����������� and �������
���������	 func-
tions, in our prototype implementation, a shim layer
below our LVM extracts the information from the disk
drives. It does so when the logical volume is initially
created and provides these functions for the given
disk. The LVM then stripes contiguous VLBNs across
k individual disks and exposes to applications a set
of d adjacent blocks in the VLBN space through the
����������� function.

Much like other disk array logical volumes [6, 27],
our LVM matches stripe units to track sizes for efficient
sequential access. Our LVM exposes to applications the
stripe unit size, T , through the �������
���������	

function. It can adopt common RAID 1 and RAID 5
protection schemes and utilize multi-zone disks with de-
fective blocks in a fashion similar to previous work [27].

For multi-zone disks, our LVM can either create mul-
tiple logical volumes, one for each zone, or create one
logical volume that spans multiple zones. In the lat-
ter case, our LVM uses varies the value of T according
to the number of sectors per track in the disk’s zone to
which the VLBNs is mapped. Put differently, in this ap-
proach, which we adopt for our experiments, a single
logical volume has variable “stripe unit” size and our
mappings of multidimensional data use the information
exposed through the �������
���������	 function to
determine the proper mapping along the one dimension
(see Section 6 for more details). Finally, d does not de-
pend on the number of zones; it is strictly a function of
track density (TPI) and the seek profile, which is fixed
for a given disk and does not change with the location of
the track.

6 Multidimensional data placement
This section demonstrates on 3D and 4D datasets how
applications can utilize the adjacent blocks and the pa-
rameter T datasets onto disks in a way that preserves
spatial locality. Through experiments with real disks
and various workloads we show that this new mapping
scheme outperforms existing schemes.

6.1 Data placement that preserves locality
To demonstrate the efficiency of accesses to adjacent
blocks, we compare two existing mapping schemes for
multidimensional data, Naive and Hilbert, with a new
mapping scheme, called MultiMap. The Naive scheme
linearizes the dataset along a chosen primary dimension
(e.g., X or time). The Hilbert scheme orders the points
according to their Hilbert curve values.

The MultiMap mapping scheme uses adjacent blocks
to preserve spatial locality of multidimensional data on
the disk(s). It first partitions the multidimensional data
space into smaller chunks, called basic cubes, and then
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Figure 12: Example of mapping a 3D dataset using MultiMap.
Each row in the graph represents a disk track with a length of 8 and
each cell corresponds to a disk block whose ��� is the number inside
the box. Suppose the value of d is 4. Dimension X is mapped to the
sequential blocks on the same track. Dimension Y is mapped to the
sequence of the first adjacent blocks. For example, ��� 8 is the first
adjacent block of ��� 0 and ��� 16 is the first adjacent block of ��� 8,
etc. Dimension Z is mapped to the sequence of the 4th adjacent blocks.
For instance, ��� 32 is the 4th adjacent block of ��� 0 and ��� 64 is
the 4th adjacent of ��� 32. In this way, MultiMap utilizes the adjacent
blocks with different steps to preserve locality on the disk.

maps all the points within a basic cube into disk blocks
on a single disk. Taking a 3D dataset as an example,
MultiMap first maps points in the X dimension to T se-
quential LBNs so that accesses along X can take advan-
tage of the full sequential bandwidth of the disk. Points
along the Y dimension are mapped to the sequence of the
first adjacent blocks. Lastly, the Z dimension is mapped
to the sequence of d-th adjacent blocks, as Figure12
shows. The sequence of adjacent blocks can be easily
obtained by calling ����������� repeatedly. With an
LVM comprised of several disks, two “neighboring” ba-
sic cubes are mapped to two different disks and the basic
cube becomes a multidimensional stripe unit.

MultiMap preserves the spatial locality in the sense
that neighboring points in the geometric space will be
stored in disk blocks that are adjacent to each other, al-
lowing for access with minimal positioning cost. Since
accessing the first adjacent block and the d-th adjacent
block has the same cost, we can access up to d separate
points that are equidistant from a starting point. This
mapping preserves the spatial relationship that the next
point along Y and the next point along Z are equidis-
tant (in terms of positioning cost) to the same starting
point. Retrieval along the X dimension result in efficient
sequential access; retrieval along Y or Z result in semi-
sequential accesses which are much more efficient than
random or even nearby access, as shown in Figure 9.

Note that MultiMap is not a simple mapping of the
3D data set to the �cylinder,head,sector� tuple repre-
senting the coordinates of the physical blocks on disk.
MultiMap provides a general approach for mapping N-
dimensional data sets to adjacent blocks. For a given
disk, the maximum number of dimensions that can be
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mapped efficiently is limited by d for that disk, such that
N � log2�d��2. As the focus of this work is the analy-
sis of the principles behind multidimensional access and
not the general data layout algorithm, we provide the
generalized algorithm, its derivation, and the analysis of
its limits elsewhere [31].

6.2 Experimental setup
Our experimental setup uses the same hardware con-
figuration as in Section 4. Our prototype system con-
sists of two software components running on the same
host machine: a logical volume manager (LVM) and
a database storage manager. In a production system,
the LVM would likely reside inside a storage array sys-
tem separate from the host machine. The prototype
LVM implements the ����������� algorithm and ex-
ports a single logical volume mapped across multiple
disks. The database storage manager maps multidi-
mensional datasets by utilizing the ����������� and
�������
���������	 functions provided by the LVM.
Based on the query type, it issues appropriate I/Os to the
LVM, which then breaks these I/Os into proper requests
to individual disks. Even when such requests are issued
out of order, the disk firmware scheduler will reorder
them to minimize the total positioning cost.

The datasets used for our experiments are stored on
multiple disks in our LVM. Akin to commercial disk ar-
rays, the LVM uses disks of the same type and utilizes
only a part (slice) of the disk’s total space [9]. The slices
in our experiments are slightly less than half of the total
disk capacity and span one or more zones.

Even though our LVM generates requests to all the
disks during our experiments, we report performance re-
sults for only a single disk. The reason is that we ex-
amine average I/O response times, which depend only
on the characteristics of a single disk drive. Using mul-
tiple drives improves the overall throughput, but does
not affect the relative performance comparisons of the
three mappings that our database storage manager im-
plements: Naive, Hilbert, and MultiMap.

We evaluate two types of spatial queries. Beam
queries are one-dimensional queries retrieving data
points along lines parallel to the cardinal dimensions
of the dataset. Range queries, called p%-length cube
queries, fetch a cube with an edge length equal to the
p% of the dataset’s edge length.

6.3 Results using a 3D dataset
The 3D dataset used in this experiment contains 1024�
1024� 1024 cells, where each cell maps to a distinct
LBN of the logical volume and contains as many data
points as can fit. We partition the space into chunks that
each fit on a portion of a single disk. For both disks,
MultiMap uses d � 128 and conservatism of 30Æ.

Beam queries. The results for beam queries are pre-
sented in Figure 13(a). We run beam queries along all
three dimensions, X , Y , and Z, and the graphs show the
average I/O time per cell (disk block). As expected, the
MultiMap model delivers the best performance for all
dimensions. It matches the streaming performance of
Naive along X . More importantly, MultiMap outper-
forms Hilbert for Y and Z by 25%—35% and Naive
by 62%–214% for the two disks. Finally, MultiMap
achieves almost identical performance on both disks un-
like Hilbert and Naive. That is because these disks have
comparable settle times, which affect the performance
of accessing adjacent blocks for Y and Z.

Range queries. The first set of three bars, labeled 1%
in Figure 13(b), shows the performance of 1%-length
cube queries expressed as their total runtime. As be-
fore, the performance of each scheme follows the trends
observed for the beam queries. MultiMap improves the
query performance (averaged across the two disks and
the three query types) by 37% and 11% respectively
compared to Naive and Hilbert. Both MultiMap and
Hilbert outperform Naive as it cannot employ sequential
access for range queries. MultiMap outperforms Hilbert,
as Hilbert must fetch some cells from physically dis-
tant disk blocks, although they are close in the original
dataset. These jumps make Hilbert less efficient com-
pared to MultiMap’s semi-sequential accesses.

To examine the sensitivity of the cube query size, we
also run 2%-length and 3%-length cube queries, whose
results are presented in the second and third sets of bars
in Figure 13(b). The trends are similar, with MultiMap
outperforming Hilbert and Naive. The total run time in-
creases because each query fetches more data.

6.4 Results using a 4D dataset
In earthquake simulation, we use a 3D grid to model the
3D region of the earth. The simulation computes the mo-
tion of the ground at each node in the grid, for a number
of discrete time steps. The 4D simulation output con-
tains a set of 3D grids, one for each step.

Our dataset is a 2000�64�64�64 grid modeling a
14 km deep slice of earth of a 38� 38 km area in the
vicinity of Los Angeles with a total size of 250 GB of
data. 2000 is the total number of time steps. We choose
time as the primary dimension for the Naive and the Mul-
tiMap schemes and partition the space into chunks that
fit in a single disk.

The results, presented in Figure 14, exhibit the same
trends as the 3D experiments. The MultiMap model
again achieves the best performance for all beam and
range queries. In Figure 14(a), the unusually good per-
formance of Naive on Y is due to a particularly fortunate
mapping that results in strided accesses that do not in-
cur any rotational latency. The ratio of strides to track
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Figure 13: Performance using the 3D spatial dataset.
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Figure 14: Performance using the 4D earthquake dataset.

sizes also explains the counterintuitive trend of the Naive
scheme’s performance on the Cheetah disk where Z out-
performs Y , and Y outperforms X . The range queries,
shown in Figure 14(b), perform on both disks as ex-
pected from the 3D case. In summary, MultiMap is
efficient for processing queries against spatio-temporal
datasets, such as this earthquake simulation output, and
is the only scheme that can combine streaming perfor-
mance for time-varying accesses with efficient spatial
access, thanks to the preservation of locality on disk.

7 Conclusion

The work presented here exploits disk drive technology
trends. It improves access to multidimensional datasets
by allowing the spatial locality of the data to be pre-
served in the disk itself. Through analysis of the charac-
teristics of several state-of-the-art disk drives, we show
how to efficiently access non-contiguous adjacent LBNs,
which are hundreds of tracks away. Such accesses can
be readily realized with the existing disk firmware func-
tions and mappings of LBNs to physical locations.

Using our prototype implementation built with real,
off-the-shelf disk drives, we demonstrate that applica-
tions can utilize streaming bandwidth for accesses along
one dimension and efficient semi-sequential accesses in
the other N� 1 dimensions. To the best of our knowl-
edge, this is the first approach that can preserve spatial
locality of stored multidimensional data, thus improving
performance over current data placement techniques.
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