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ABSTRACT
This paper presents a new approach called model-carrying code
(MCC) for safe execution of untrusted code. At the heart of MCC
is the idea that untrusted code comes equipped with a concise high-
level model of its security-relevant behavior. This model helps
bridge the gap between high-level security policies and low-level
binary code, thereby enabling analyses which would otherwise be
impractical. For instance, users can use a fully automated veri-
fication procedure to determine if the code satisfies their security
policies. Alternatively, an automated procedure can sift through
a catalog of acceptable policies to identify one that is compatible
with the model. Once a suitable policy is selected, MCC guaran-
tees that the policy will not be violated by the code. Unlike previous
approaches, the MCC framework enables code producers and con-
sumers to collaborate in order to achieve safety. Moreover, it pro-
vides support for policy selection as well as enforcement. Finally,
MCC makes no assumptions regarding the inherent risks associ-
ated with untrusted code. It simply provides the tools that enable a
consumer to make informed decisions about the risk that he/she is
willing to tolerate so as to benefit from the functionality offered by
an untrusted application.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection, — Invasive
software ; K.6.5 [Computing Milieux ]: Management of comput-
ing and Information Systems, Security and Protection, Unautho-
rized access
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1. INTRODUCTION
There has been significant growth in the use of software from

sources that are not fully trusted — a trend that has accelerated
since the advent of the Internet. Examples of untrusted or partially
trusted software include: document handlers and viewers (e.g., Real
Audio, ghostview), games, peer-to-peer applications (e.g., file shar-
ing, instant messaging), freeware, shareware and trialware, and mo-
bile code (applets, JavaScript, ActiveX).

Contemporary operating systems provide little support for cop-
ing with such untrusted applications. Although support for code-
signing has been introduced into recent OSes, this technique is use-
ful only for verifying that the code originated from a trusted pro-
ducer. If the code originated from an untrusted or unknown pro-
ducer, then code-signing provides no support for safe execution of
such code. The users (henceforth called code consumers) are faced
with the choice of either losing out on the potential benefits pro-
vided by such code by not running it, or exposing themselves to
an unacceptable level of risk by running the code with all of the
privileges available to the code consumer.

The lack of OS-level support for safe execution of untrusted
code has motivated the development of a number of alternative ap-
proaches. These approaches can be divided into execution mon-
itoring [14, 12, 31, 33, 18, 1, 19] and static analysis [29, 28, 7,
11, 34, 24]. With execution monitoring, policy violations are de-
tected at runtime, at which point the consumer can be prompted to
see if he/she is willing to grant additional access rights to the pro-
gram, or instead wishes to simply terminate it. In the former case,
the consumer is being asked to make decisions on granting addi-
tional access to a program without knowing whether these accesses
will allow the program to execute successfully, or simply lead to
another prompt for even more access. On the other hand, termi-
nating the program causes inconvenience, since the user may have
already spent a significant amount of time searching/acquiring the
untrusted code, or in providing input to it. In addition, the con-
sumer may have to perform “clean up” actions, such as deleting
temporary files created by the program or rolling back changes to
important data.

Static analysis-based techniques do not suffer from the inconve-
nience of runtime aborts. However, from a practical perspective,
static analysis techniques are effective only when operating on the
source code of programs. Typically, code consumers deal with bi-
nary code, which makes it difficult (if not impossible) for them to
statically verify whether the code satisfies their policy. Although
proof-carrying code (PCC) [29] can, in principle, allow such verifi-
cation to be applied to binaries, practical difficulties have limited its
application to primarily type and memory safety properties. Thus,
for the vast majority of code distributed in binary form, and the
vast majority of safety policies which concern resource accesses



made by untrusted programs, static analysis-based approaches do
not provide a practical solution for safe execution.

The new approach presented in this paper, called model-carrying
code (MCC), combines the convenience of static analysis-based ap-
proaches such as PCC (i.e., the reduction or elimination of runtime
aborts) with the practicality of execution-monitoring (i.e., the abil-
ity to enforce a rich class of consumer-specified security policies).
It is inspired by the PCC approach, and shares with it the high-level
idea that untrusted code is accompanied by additional information
that aids in verifying its safety. With MCC, this additional infor-
mation takes the form of a model that captures the security-relevant
behavior of code, rather than a proof. Models enable code pro-
ducers to communicate the security needs of their code to the con-
sumer. The code consumers can then check their policies against
the model associated with untrusted code to determine if this code
will violate their policy. Since MCC models are significantly sim-
pler than programs, such checking can be fully automated.

Models serve the important purpose of decoupling the concerns
of code producers and consumers. Code producers need not guess
security policies of different consumers, nor do they need to expend
resources on the generation of proofs in response to requests from
consumers. Similarly, code consumers no longer need to tackle
the difficult problem of correctly guessing the security needs of an
untrusted application. Moreover, they need not reveal their secu-
rity policies to code producers that they don’t trust. Thus, MCC
provides a framework for code producers and consumers to collab-
orate to achieve safe execution of untrusted code. This contrasts
with previous execution-monitoring approaches [19, 14, 18, 12]
that place the burden of security entirely on the code consumer,
and PCC, which places the burden entirely on the code producer.

MCC enables code consumers to try out different security poli-
cies of interest to them prior to the execution of untrusted code,
and select one that can statically be proved to be consistent with
the model associated with a piece of untrusted code. This contrasts
with purely execution monitoring-based approaches, wherein the
consumer needs to deal with repeated runtime aborts (and associ-
ated clean-up efforts) to try out different policies; and with PCC,
where the only policies that can be statically checked are those for
which proofs have been furnished by the code producer.

When a consumer’s policy is violated by a model, MCC provides
a concise summary of all violations, rather than providing them one
by one. By capturing all policy violations in one shot, MCC helps
avoid repeated policy violation prompts that are associated with ex-
ecution monitoring-based approaches. Moreover, this summary is
of considerable help in navigating the policy space and identify-
ing the refinement that is most suitable for a given piece of code.
Thus, MCC provides support not only for policy enforcement, but
also policy selection — a problem that has not been addressed by
previous research in this area.

1.1 Overview of Approach
The key idea in our approach (see Figure 1) is the introduction

of program behavioral models that help bridge the semantic gap
between (very low-level) binary code and high-level security poli-
cies. These models successfully capture security-related properties
of the code, but do not capture aspects of the code that pertain only
to its functional correctness. The model is stated in terms of the
security-relevant operations made by the code, the arguments of
these operations, and the sequencing relationships among them. In
our current implementation, these operations correspond to system
calls, but alternatives such as function calls are also possible.

While models can be created manually, doing so would be a
time-consuming process that would affect the usability of the ap-

proach. Therefore, we have developed a model extraction approach
that can automatically generate the required models. Since the
model extraction takes place at the producer end, it can operate
on source code rather than binary code. It can also benefit from
the test suites developed by the code producer to test his/her source
code.

The code consumer receives both the model and the program
from the producer. The consumer wants to be assured that the code
will satisfy a security policy selected by him/her. The use of a se-
curity behavior model enables us to decompose this assurance ar-
gument into two parts:
• policy satisfaction: check whether the model satisfies the pol-

icy, i.e., the behaviors captured by the model are a subset of the
behaviors allowed by the policy. This can be expressed sym-
bolically as

B[M ] ⊆ B[P ]

where P denotes a policy,M denotes a model, and B is a func-
tion that maps a policy (or a model) to the set of all behaviors
satisfied by the policy/model.

• model safety: check if the model captures a safe approxima-
tion of program behavior — more precisely, that any behavior
exhibited by the program is captured by the model:

B[A] ⊆ B[M ]

Here, A denotes an application, and B and M have the same
meaning as before.

Together, these two imply that B[A] ⊆ B[P ], i.e., the application
A satisfies the security policy P .

Note that model safety is a necessary step whenever the code
consumer does not trust the model provided by the code producer.
In particular, the producer may provide an incorrect model either
due to malice, or errors/omissions in the model extractor (e.g., fail-
ure to account for all possible program behaviors).

In principle, policy satisfaction as well as model safety can be
established using static analysis or verification techniques. In prac-
tice, however, we resort to runtime enforcement for ensuring model
safety due to the difficulties in verifying properties of low-level (bi-
nary) code.

The policy selection component in Figure 1 is concerned with
policy satisfaction, whereas the enforcement component is con-
cerned with model safety. In practice, the policy selection com-
ponent uses automated verification (actually, model-checking [8]).
Since models are much simpler than programs, complete automa-
tion of this verification step is possible. If the model is not con-
sistent with the policy, the verifier generates a compact and user-
friendly summary of all consistency violations. The consumer can
either discard the code at this point, or refine the policy in such a
way that would permit execution of the code without posing undue
security risks.

The policy selection step requires that a consumer be knowledge-
able about security issues. Consumers that do not possess this level
of knowledge can rely on their system administrator to pre-specify
the policy to be used with an untrusted application at its installa-
tion time, or provide a set of choices that the user can select prior
to execution of the code.

If the refined policy is consistent with the model, then the model
and the code are forwarded to the enforcement module. Our cur-
rent implementation of enforcement is based on system call inter-
ception. If the enforcement component detects a deviation from
the model, then the execution of the untrusted code is terminated.
An alternative to model enforcement is to directly enforce the con-
sumer’s security policy, as discussed further in Section 5.
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Figure 1: The Model-Carrying Code Framework

Although execution monitoring, by itself, has the drawbacks men-
tioned earlier, its use in MCC does not entail the same drawbacks.
Note that any enforcement violation in MCC indicates that either
the code producer intentionally supplied an incorrect model, or that
the model extractor was faulty. The predominance of benign code
over malicious code on the Internet indicates that most code pro-
ducers are not malicious, and hence they will not intentionally pro-
vide incorrect models. We expect violations due to model extractor
errors to be unlikely as well. Thus, in the vast majority of cases,
MCC enables code consumers to use untrusted code safely (i.e.,
their security policy will not be violated) and conveniently (i.e.,
there will be no runtime aborts). In a small minority of cases, where
a runtime violation is experienced, safety is still retained, but con-
venience may be lost.

Although this paper focuses on untrusted programs executing on
a UNIX operating system, techniques from our approach could be
easily adapted for different execution environments such as Java or
Microsoft’s Common Language Runtime (CLR) environment (part
of its .NET initiative). As a first step in this direction, we have
done some preliminary work in defining security policies in terms
of security-relevant method calls in Java, and implementing policy
enforcement via bytecode rewriting [36].

1.2 Organization of the Paper
We begin our description of the MCC approach with an overview

of the MCC policy language in Section 2. Next, in Section 3, we
describe our model language and our approach for extracting mod-
els from programs. The policy selection component is described in
Section 4, while enforcement is described in Section 5. Our imple-
mentation of the above four components is described in Section 6,
together with performance results that establish the practicality of
MCC. This is followed by a discussion on various aspects of the
implementation in Section 6.1. Integration of MCC into existing
software environments is described in Section 6.2. Finally, con-
cluding remarks appear in Section 7.

2. SECURITY POLICIES
Enforcement in MCC relies on execution monitoring, and hence

only enforceable security policies [31] are of interest. Such policies
are limited to safety properties. With other kinds of properties such
as those involving information flow [42] and covert channels [23],
enforcement is either impossible or impractical, and hence they are
not considered in this paper.

Common examples of enforceable policies include access-control
and resource-usage policies. Java 2 security model [19] supports
standard access-control policies, but can handle applications that
consist of code from multiple producers. Naccio [14] supports

specification of both access control and resource usage policies.
The security automaton formalism [31] can support safety proper-
ties that involve sequencing relationships between operations. How-
ever, this formalism (and the associated language PoET/PSLang
[13]) does not provide the ability to remember argument values
such as file descriptors for subsequent comparisons with arguments
of other operations. We have shown in [36, 33] that this ability to
remember arguments enhances the expressive power of the policy
language significantly. Accordingly, our policy language is based
on extended finite state automata (EFSA) that extend standard FSA
by incorporating a finite set of state variables to remember argu-
ment values. For instance, we can associate a write operation
with the file name involved in writing by recording the return value
from an open operation (a file descriptor), and comparing it with
the argument of the write operation. Below, we describe this pol-
icy language and illustrate it through examples.

2.1 Security Policy Language
We model behaviors in terms of externally observable events.

In modern operating systems, security-related actions of programs
must be ultimately effected via system calls. For this reason, sys-
tem calls constitute the event alphabet in our policies. Naturally,
it is possible to define behaviors in terms of operations other than
system calls, such as arbitrary function calls. Higher level policies
can often be stated more easily and accurately in terms of func-
tion calls. For instance, a policy that permits a program P to make
name server queries can be stated as “program P is allowed to use
the function gethostbyname” rather than the more complicated
(and less precise) version “program P is allowed to connect to IP
address xyz on port 53.” On the downside, enforcement of such
policies will require secure interception of arbitrary function calls,
which is not possible in general for binary code.

We use the term history to refer to a sequence of events. A his-
tory includes events as well as their arguments. A trace is a history
observed during a single execution of a program. The behavior of a
program A, denoted B(A), is defined to be the set of all traces that
may be produced during any execution of A.

Policies capture properties of traces. They are expressed using
EFSA. Like security automata, EFSA express negations of policies,
i.e., they accept traces that violate the intended policy. The state of
an EFSA is characterized by its control state (the same notion as the
“state” of an FSA), plus the values of (a finite set of) state variables.
State variables can take values from possibly infinite domains, such
as integers and strings. Each transition in the EFSA is associated
with an event, an enabling condition involving the event arguments
and state variables, and a set of assignments to state variables. For
a transition to be taken, the associated event must occur and the



List admFiles = {“/etc/f1”, “/etc/f2”};
any* · open(f, mode)|((f in admFiles)

|| (mode != O RDONLY))

List fileList = {};
(FileCreateOp(f)| add(f, fileList) || other)*

· (FileDeleteOp(g)| !(g in fileList))

any* · ((socket(d, f)| d != PF LOCAL)
|| FileWriteOp(g))

other

                        (mode  

any

O_RDONLY)) 

s1

s2

admFiles := “/etc/*”, “/var/*”

open(f, mode) | (f ∈ admFiles) ‖

other FileCreateOp(f) |

FileDeleteOp(g) |

add(f,fileList)

any

s1

s2

g /∈ fileList

other

FileWriteOP()

socket(domain, flags)
|  domain != PF_LOCAL

any

s1

s2

(a) Access control policy (b) History-sensitive policy (c) Sensitive file read policy

Figure 2: Examples of REE policies and their equivalent EFSA representation

enabling condition must hold. When the transition is taken, the
assignments associated with the transition are performed.

EFSA-based policies are expressed in our Behavior Monitoring
Specification Language (BMSL). BMSL permits EFSA to be de-
scribed by defining states, start and final states, and transition rules.
BMSL also permits a dual representation of EFSA using Regular
Expressions over Events (REE) [33]. Just as EFSA extend FSA
with state variables, REEs extend regular expressions with state
variables. For simple policies, REEs tend to be much more concise
and “text-friendly” than EFSAs. Hence in practice, we write most
of our policies using REEs. The BMSL compiler can translate poli-
cies into an EFSA form that is used by the verifier. The EFSA form
may also be used for policy enforcement, as we have done in the
past for the purposes of intrusion detection [4]. [35] establishes the
equivalence of EFSA and REE, so the two notations can be freely
mixed in BMSL. (This capability of BMSL is analogous to the abil-
ity to mix regular expressions and state machine constructs in Lex.)
Further details on REEs and EFSA, including their formal seman-
tics, matching complexity and expressive power can be found in
[35]. Below, we provide a short description of BMSL.

Events. Events may be further classified as follows:

• Primitive events: There are two primitive events associated
with each system call, one corresponding to the system call in-
vocation and the other to its exit. The invocation event has the
same name and arguments as the system call, while the return
event has an “ exit” appended to its name. The arguments of
the entry event include all of the arguments at the point of call.
The arguments to an exit event include all of the arguments at
the point of return, plus the value of the return code from the
system call.

• Abstract events: Abstract events can be used to denote classes
of primitive events, e.g., we may define
FileModificationOps as an event that corresponds to a set
of events that modify files. More generally, abstract events may
be defined using the notation event(args) = pat, where event
denotes the abstract event name, and pat is further defined be-
low.

Patterns. The simplest patterns, called primitive patterns, are of
the form e(x1, ..., xn)|cond/asg, where cond is a boolean-valued
expression on the event arguments x1, ..., xn and state variables,

and asg contains zero or more assignments to state variables. The
scope of event arguments is limited to the primitive pattern within
which it occurs.

Compound patterns are obtained by composing primitive pat-
terns using sequencing operators similar to those in regular expres-
sions. The meaning of patterns is best explained by the following
definition of what it means for a historyH to satisfy a pattern:

• event occurrence: e(x1, ..., xn)|cond is satisfied by the event
history consisting of the single event e(v1, ..., vn), if cond eval-
uates to true when variables x1, ..., xn are replaced by the val-
ues v1, ..., vn.

• alternation: pat1||pat2 is satisfied by H if either pat1 or pat2
is satisfied by H .

• sequencing: pat1 ·pat2 is satisfied by an event historyH of the
formH1H2 provided H1 satisfies pat1 andH2 satisfies pat2.

• repetition: pat∗ is satisfied by H iff H is empty, or is of the
formH1H2 whereH1 satisfies pat and H2 satisfies pat∗.

• negation: !pat is satisfied by H iff pat is not satisfied by H .
Use of negation, is not permitted in BMSL if pat involves se-
quencing or repetition.

The notion of satisfaction extends in the obvious way when state
variables are included, and the details can be found in [35].

We say that a history H matches a policy pat provided that a
prefix of H matches pat.

2.2 Illustrative Examples
Often, it is convenient to group similar events into one abstract

event. For instance, there are a number of system calls that can re-
sult in the creation or modification of a file, such as open, creat,
and truncate. By defining an abstract event:

FileWriteOp(f)= (open(f, mode) | writeFlags(mode))
|| creat(f) || truncate(f)

we can use FileWriteOp subsequently to denote any of these op-
erations. For readability, we have abstracted a test on the value
of mode into a call to a function writeFlags, which returns true
whenever the mode corresponds to opening the file for writing. We
have also omitted trailing arguments to creat and truncate as
we are not interested in their values.

Figure 2 illustrates three simple policy examples using REE as
well as EFSA notation. Note that, the special event any stands for
any event, while other stands for an event other than those match-



ing the rest of the transitions on the same state. Since a history H
matches an REE whenever a prefix ofH satisfies the REE, the REE
patterns do not need to have the any transitions that occur in the
final state of the EFSA policies.

Figure 2(a) is a simple access control policy that prevents writes
to all files, and reads from any of the files in a set admFiles. Note
that the operator || is overloaded so that it can represent pattern
alternation as well as the boolean-or operation. If any of these pro-
hibited operations are performed by a program, then the automaton
makes a transition from the start state (marked with a “>” symbol)
to the final state (marked with a double circle). For any other oper-
ations, the transition marked “other” is taken, i.e., the EFSA stays
in the start state.

Resource usage policies can also be expressed using EFSA very
easily. For instance, a state variable can be used to keep track of the
number of open file descriptors, and deny further opens when too
many files are open. We do not dwell on resource usage examples
in this paper since resource usage properties are not very amenable
to fully automated verification.

Figure 2(b) illustrates a history-sensitive policy that allows an
untrusted application to remove only those files that it previously
created. This policy illustrates the use of a list variable fileList
to remember the names of files that were created by an application.
(Here, FileCreateOp is an abstract event that should have pre-
viously been defined to denote successful returns from all system
calls that may create a file.) Any file that the application attempts
to delete is checked in this list, and if absent, a policy violation is
flagged. Another example of a history-sensitive policy is one that
requires an application to close all the files it opened before execut-
ing another program. In REE, this policy is expressed as:

any* · open exit(f, fd)|(fd > 0) / (FD = fd)

· (!close(g)|(g == FD))* · execve()

Note that this policy uses only a single state variable FD, but the
nondeterministic nature of matching will ensure that a policy vio-
lation is reported when any successfully opened file remains open
at the time of the execve system call.

Figure 2(c) shows the “no network accesses and no file write op-
erations” policy. This policy prevents an application from sending
information to an untrusted remote site or write it to an output file.
A possible scenario for the use of this policy is the case when an
application needs to operate on confidential information in an “eyes
only” fashion.

3. MODEL GENERATION
The problem of generating abstract models from programs has

been studied by several researchers in software model-checking [3,
20, 26, 21, 9, 10, 5]. However, very few of these approaches are
fully automated, and furthermore, they generate distinct models
which are customized for each property to be proved. Property-
specific customization greatly simplifies the model, and makes it
possible to prove complex properties that could not be proved oth-
erwise. However, in MCC, the code producer generating the model
is unaware of consumer security policies. Hence, a single model
must be generated that is usable for almost all policies. For this
reason, some of the previous works in generating program behav-
ior models for intrusion detection are more closely related to MCC
model generation than the software model-checking approaches. In
particular, [38] develops an approach to derive automata models of
program behavior from source code. This approach can generate
FSA as well as PDA (push-down automata) models. The principal
difficulty in applying this approach to MCC is its inability to sys-
tematically reason about system call arguments. Clearly, it is not

enough to know that something is being written by a program —
we need to identify the resource being modified by the write. For
this reason, an EFSA (or EPDA) model is more appropriate than an
FSA (or PDA) model. Moreover, the model generation step needs
to capture values of system call arguments, as well the relationships
among the arguments of different system calls. For instance, the
model should associate a write operation with the file being writ-
ten by capturing the relationship that the file descriptor argument
of the write is the same as the return value of a previous open
operation. In the rest of this section, we describe a new technique
for generating such models in the context of MCC.

3.1 Model Generation Approaches
MCC models are intended to capture program behavior, which

was defined in the previous section to be the set of all possible
sequences of security-relevant operations made by a program. In
order to capture all possible sequences of operations, our model
extraction approach preserves the looping and branching structure
present in programs, while abstracting away details such as assign-
ments to internal variables. Figure 3 illustrates a model for a sample
program. Note that in Figure 3, S0 through S5 denote system calls.

As the above example shows, FSA provide a convenient repre-
sentation for MCC models, concisely preserving the looping and
branching structures within the program. However, the example
of Figure 3 omits system call arguments for the sake of simplicity.
When argument properties are incorporated into the model, EFSA
(rather than FSA) become more natural. It is also possible to use
pushdown automata (PDA) for expressing models, which have the
benefit of capturing call-return relationships, hence enjoy greater
accuracy. However, this added accuracy may not be fully useful,
since enforcement of PDA models would require the secure inter-
ception of all function calls made by a program, which is not possi-
ble for arbitrary binaries. But PDA possess an important advantage
over FSA in that the models are modular, i.e., the model of one
procedure in a program does not depend upon how it is invoked.
This factor enables models of different program components (such
as libraries) to be extracted independently, and then be composed
together to obtain the overall model for the program. Accurate
models can hence be synthesized even when the code comes from
multiple sources — the most common case of this occurring when
an executable from an untrusted producer uses dynamically linked
libraries resident on the consumer’s workstation (e.g., libc). Our
implementation currently uses EFSA models.

One approach to model extraction is to use a program analysis
technique, such as that described in [38, 7]. The main benefit of
this approach is that, if the model generation process strictly avoids
unsound assumptions, then the models will be conservative — in
this case, using the notation of Section 1.1, we are guaranteed that
for an application A and its modelM derived by source code anal-
ysis, B(A) ⊆ B(M). The drawback is that, due to the limitations
of source code analysis, M may include execution sequences that
can, in fact, never be performed by A. This may lead to a spurious
policy violation report from the verifier.

To overcome the spurious violation problem, models may be
generated from actual program behaviors observed under different
test conditions. The downside of this approach is that program be-
haviors that are not observed during model generation may not be
captured in the model. This may lead the verifier to conclude that a
program satisfies a policy, when it actually does not. To minimize
this possibility, as many program behaviors as possible should be
exercised during the learning process. This can be accomplished
using a comprehensive test suite, which the code producer most
likely will have already developed for testing purposes. Depend-



1. S0;
2. while (..) {
3. S1;
4. if (...) S2;
5. else S3;
6. if (S4) ... ;
7. else S2;
8. S5;
9. }
10. S3;
11. S4;

S1

S2
S4

S4 S2

S0

S0

S5

S5 3S S41 3

5
S S

1 3

4

6 7 8 10 11

Figure 3: A sample program and its model

ing on the comprehensiveness of the test suite, there may still be a
(hopefully small) possibility that the application deviates from its
model. In such cases, the MCC enforcement mechanism will ter-
minate the program. Note that in this case, safety is still preserved,
but the convenience (of not having runtime aborts) is lost. Fortu-
nately, this happens only in the (hopefully very small) fraction of
runs that deviate from the model.

We are currently pursuing the extraction of EFSA models us-
ing execution monitoring, and EPDA (standard PDA extended with
state variables) models from source code. In both cases, the main
focus of our research has been in tracking data flow relationships
affecting critical system call arguments such as the resource ac-
cessed using a system call. Currently, our implementation of source-
code model extraction is not mature enough, so our description be-
low focuses on execution monitoring-based model extraction.

3.2 Model Generation via Execution Monitor-
ing

In the context of intrusion detection, a number of techniques have
been developed for extracting program behavior models in terms of
system calls [16, 40, 32, 6, 15, 27, 25]. Some of these techniques
[16] learn a finite set of fixed-length strings of system calls, while
some others are capable of learning (a finite set of) variable-length
strings [40]. We developed a new approach in [32] that is capable
of representing an infinite number of strings of unbounded length
using a finite-state automaton. Another approach [6] for learning
FSA has been developed recently. [15] builds on [32] to develop an
approach that learns PDA models rather than FSA models, but this
approach incurs significantly higher overheads.

While FSA can serve as a starting point for MCC models, they
are not sufficient by themselves — in particular, MCC models need
to capture crucial information, such as file names or network ad-
dresses that will be referenced by security policies. The main focus
of MCC research in model extraction has been to develop a fully
automated algorithm for extracting such argument relationships.
This contrasts with human-assisted approaches such as [2], where
a programmer was required to identify the subsequences within an
execution trace within which such argument relationship will be
attempted. Moreover, our approach is aimed at learning relation-
ships involving complex data types such as file names, whereas [2]
is concerned only with integer arguments. Below, we describe our
approach for model extraction via machine learning from execu-
tion traces. We first provide a brief overview of our approach for
learning FSA from system call sequences [32], and then proceed
to describe the extensions to this algorithm for learning argument
relationships.

3.2.1 Overview of FSA Learning Algorithm
It is well-known that learning FSA from strings (execution traces,

in our case) is a computationally hard problem [30]. The primary

difficulty is that the strings, by themselves, do not give any clue
as to the state of the automaton. For instance, if we see a string
abcda, we cannot determine whether the two a’s in the string cor-
respond to the same state of the automaton or different states. The
key insight behind the technique of [32] is that we can indeed ob-
tain state-related information if we knew the location from where
the system call was made. Based on this call location information,
an FSA is constructed as follows. Whenever a system call S is
made from program location PC, we first create a new automaton
state labeled PC if it is not already present. In addition, an edge la-
beled with S is created from the previous system call location PC′

to PC. Using this approach, Figure 3 illustrates the model learned
from the following two execution traces.

• S0
1

S3
10

S4
11

• S0
1

S1
3

S2
4

S4
6

S5
8

S1
3

S3
5

S4
6

S2
7

S5
8

S3
10

S4
11

In these traces, the notation S
P

denotes that the system call S is be-
ing made from the location P . For illustrative purposes, line num-
bers are used in place of locations of machine instructions in this
example. Note that automaton states are labeled with the location
from where each system call was made.

The simple description given above needs to be extended when
we take into account the fact that most programs make extensive
use of libraries. For instance, system calls are usually made from
within functions provided by libc. In this case, note that each
system call will be made from exactly one location in the program
that is contained in libc, and hence the automaton will not capture
useful information about the executable that is making these sys-
tem calls. To address this problem, our learning algorithm ignores
the program locations within libraries, instead using the location
within the executable from where these library calls were invoked.
This requires a “walk” up the program stack at the point of sys-
tem call. We describe an implementation of the stack-walk for
Linux/x86. Implementations for a different OS/architecture will
typically be very similar. On Linux/x86 the EBP (extended base
pointer) register is used to chain together activation records of a
caller and callee functions. Specifically, the return address for the
current procedure is found at the location (EBP+4), while the base
pointer of the caller is stored at the location (EBP). The range of
locations within the executable can be found by reading the pseudo
file /proc/pid/maps, where pid denotes the process identifier for
the monitored process. Using this information, the stack frame is
traversed up from the point of the system call until a return address
R within the executable is located. This location R is used in the
model as the location from where this system call was made.

3.2.2 Learning Argument Values
Before describing the algorithm for learning system call argu-

ment values, it is necessary to provide an overview of the imple-



mentation architecture of the model extractor. The model extractor
consists of an online and an offline component. The online com-
ponent consists of a runtime environment to intercept system calls
and a logger that records these system calls and their arguments
into a file. The logger incorporates some level of knowledge about
what system call arguments (and return values) are useful for model
extraction, and whether any preprocessing is necessary on these ar-
guments. For instance, the logger converts file and directory name
arguments into a canonical form before recording them. Similarly,
it extracts the IP address and port information from sockets and
records them explicitly. It ignores some system call arguments and
return values, such as buffers returned by the read system call,
most fields of the structure returned by stat system call, etc. The
offline component consists of two parts: the EFSA learning algo-
rithm, and a log file parser.

The extension of the FSA algorithm to learn system call argu-
ment values proceeds as follows. First, we may be interested in
absolute values of arguments. For instance, a model should capture
names of specific files opened by an application. To accomplish
this, our algorithm records system call argument values together
with each system call in the FSA. If there are multiple invocations
of a system call along an edge in EFSA, the model extractor col-
lects argument values from each of the invocations. If the number
of such values crosses a threshold, then an aggregation algorithm
is employed to summarize the values, rather than listing each one.
In principle, the learning algorithm should support different aggre-
gation operations, but in practice, we have so far found the need
for only two such operations: the longest common prefix operation
for file names, and the union operation for sets represented using
bit vectors, e.g., file open modes or permissions. For each system
call argument type, a configuration file specifies the threshold point
when aggregation will be used, and the aggregation operation to
be used for that type. For file name arguments, the threshold can
be specified as a function of the file name prefix. For instance, we
can set a threshold of 2 for files of the form /tmp/*, while using a
threshold of 10 for files of the form /etc/*.

We point out that the use of the basic FSA approach, and in par-
ticular, the use of program location information, is crucial for the
success of this approach. Without this information, we could po-
tentially be forced to summarize argument values across all system
calls with the same name. Alternatively, we may try to partition
system calls with the same name into subsets that yield good ag-
gregation, but such subset construction algorithms will likely be ex-
pensive. If the algorithm needs to incorporate relationships among
the arguments of a single system call, e.g., the fact that a certain
file name is always opened in read-only mode, then the subset con-
struction will become even more complex. In effect, the program
location information, provides an efficient and effective way to con-
struct such subsets. Its effectiveness stems from the fact that system
calls made by the same point of code in a program are more likely
to be related than those made from different program locations.

3.2.3 Learning Argument Relationships
The most interesting aspect of model extraction is our approach

for learning temporal relationships between arguments of different
system calls. We observed that such relationships are crucial for
tracking many security-related properties. For instance, in order to
relate a write system call to the file being written, we need to asso-
ciate the file descriptor argument of write with the return value of
a previous open system call. Similarly, to track the remote location
from which data was read by a process, we need to associate the
socket argument of a send or write with the return arguments of
a preceding accept or connect. Finally, to identify the child pro-

cess to which a signal is being sent by a parent process, one needs
to relate the return value of fork with the return value of wait.

One of the main difficulties in learning system call argument re-
lationships is in identifying which pairs of system calls need to be
considered. A naive approach, which considers every possible pair,
will be unacceptably inefficient. Such an algorithm will have com-
plexity that is quadratic in the size of the trace, which is typically of
the order of 103 to 107 events, depending upon the comprehensive-
ness of the test suites used in generating the traces. Even worse,
such an approach can generate relationships that are quadratic in
the size of the trace. However, we would like the number of rela-
tionships learned to be of the same order as the size of FSA, which
is typically in the range of a few hundred states.

To overcome the above difficulties, we rely upon the observation
that we are typically interested in specific relationships among ar-
guments of the same kind. For instance, we are interested in the
equality relationship between file descriptor arguments, but not in
inequalities or other relationships. Moreover, it is meaningless to
compare file descriptors with process identifiers. Based on this ob-
servation, our approach is to specify, through a configuration file,
the “kind” of a system call argument, and the relationships of in-
terest involving arguments of this kind. (Note that return values
are treated as if they are additional arguments to a system call.)
In our implementation, we currently support equality relationships
among integral and string types, and prefix and suffix relationships
over strings.

Once the relationships of interest are specified, they can be learned
as follows. First, a distinct (EFSA) state variable is associated with
each (system call, invocation location, argument number) triple.
(Note that because of the way system calls are traced back to lo-
cations in the executable, multiple system calls that are made from
a library function f invoked by the executable at location L will all
appear as transitions from the state corresponding to L. Thus it is
possible to have multiple system calls that are all executed from the
same location L, and hence there is a need to consider the system
call number in addition to the location.) This means that there will
be two distinct variables corresponding to the file name argument
of an open system call that are made from two different locations
in the program.

Each variable that is a candidate for an equality relationship is
stored in a hash table, indexed by its most recent value. The hash
tables for different kinds of arguments will be different, e.g., a sep-
arate hash table will be maintained for file descriptors and process
ids. At any point during learning, associated with each file descrip-
tor value fd will be the list of variables (of file descriptor type)
whose most recent value was fd. When another system call with a
file descriptor variable v with value fd′ is made, the learning algo-
rithm will look up fd′ in the table, and obtain the associated list V
of variables. If this is the first time v has been seen, then the rela-
tionship information associated with v is set to V . This indicates
that every variable in V is equal to v. If it is not the first time, then
there will already be a set V ′ of variables that was associated with
v the last time v was encountered during learning. We associate
V ∩ V ′ with v and proceed. Note that this means that the rela-
tionships may weaken over many runs, but cannot be strengthened.
Finally, the previous value fdold of v is deleted from the hash table,
and v is added to the set V .

For prefix and suffix relationships, a trie data structure is used in
place of the hash table. (A trie can be viewed as a tree-structured
finite-state automaton for matching strings.) In particular, when a
variable v is encountered in the trace with value s, we traverse down
a path in the trie that matches s. If there is a complete match for
s, and this match takes us to a state S in the trie, then the variables
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Figure 4: Model EFSA for Figure 5

associated with S are candidates for equality with v. Each vari-
able v′ associated with any descendant state S′ of S is a candidate
for the relationship prefix(v, v′) = v and prefix(v, v′) = s.
Similarly, any variable v′′ associated with an ancestor state S′′

of S is a candidate for the relationship prefix(v, v′′) = v′′ and
prefix(v, v′′) = s′′, where s′′ is the string corresponding to state
S′′. Finally, any variable v′′′ associated with a descendant state
S′′′ of an ancestor states of S (such as S′) is a candidate for the re-
lationship prefix(v, v′′′) = s′′. If only a (possibly empty) prefix
of s is present in the trie, then the treatment is similar, except that
there will be no descendant states (such as S′) mentioned above.

Once the candidates for relationship with the current instance
of v are identified, they are compared with the candidates for the
previous occurrence of v in the trace, and only the common rela-
tionships are preserved. At this point, note that v would be stored in
a state Sold which corresponds to its previous value sold. v is then
deleted from Sold, and inserted into S. The state Sold is deleted if it
is no longer associated with any variables, and the same is done for
the ancestors of Sold. The new state S is created if it is not already
present.

For suffix relationships, the exact same algorithm is used, but
the tries are constructed after reversing the strings. In addition, to
improve the speed of the algorithm, we can restrict the lengths of
paths from S to states S′, S′′ and S′′′ described above.

The final step of the algorithm is to prune redundant relation-
ships. Suppose that a program opens a file at location P0 and
then performs read operations on this file from n different locations
L1, ..., Ln. Let x0, x1, ..., xn be the corresponding state variables.
The above algorithm will associate the set {x1, ..., xn} with x0,
{x0, x2, ..., xn} with x1 and so on. Obviously, this is redundant
information — for instance, we can associate {x0} with x1, {x1}
with x2 and so on. Note that such pruning is difficult to perform
during the learning phase itself. This is because premature pruning
can lose information. For instance, the first two occurrences of x2

may have been equal to both x1 and x0, but subsequent occurrences
may be equal only to x0. Due to premature pruning, it is possible
to lose out on such information.

We use the example shown in Figure 5 to illustrate model extrac-
tion. This program is a simplified version of a hypothetical free-
ware program which analyzes web server logs for unusual activity.
(Our experience with a real program that analyzes web logs is de-
scribed in Section 6.) In particular, the log entries are compared
against signatures of known attacks. Since the signature set is con-

stantly updated as new attacks are discovered, it is better for the an-
alyzer program to download these signatures from a central server
rather than encoding them within the analyzer program. Hence, the
first step in the execution of the example program is to connect to
this signature server over the network, and download a set of sig-
natures. It then opens the log file, and matches each line in the log
file with the signatures. To simplify the example, we have used just
a single pattern as a signature. In addition, we do not check error
cases. Any matches are written into an output file. The lines of
code where system calls are made by the program are marked with
the symbol “J” in Figure 5.

Figure 4 shows an abstracted version of the EFSA learned by the
above algorithm for the example program. The abstracted details

int main(int argc, char *argv[]) {
int sd, rc, i, log fd,out fd,flag = 1;
struct sockaddr in remoteServAddr;
char recvline[SIG SIZE+1], sendline[SIG SIZE+1];
char buf[READ SIZE];

init remote server addr(&remoteServAddr,...);
init sendmsg(sendline,...);
sd = socket(PF INET,SOCK STREAM,0); J
connect(sd, (struct sockaddr*)&remoteServAddr,sizeof(...)); J
send(sd, sendline, strlen(sendline)+1,0); J
recv(sd, recvline, SIG SIZE,0);J
recvline[SIG SIZE] =’\0’;
log fd = open(”/var/log/httpd/access log”,O RDONLY); J
out fd = open(”/tmp/logfile”,O CREAT|O WRONLY); J
close(sd); J
while (flag!=0) {

i = 0;
do {

rc=read(log fd,buf+i,1); J
if (rc == 0) flag =0;

} while (buf[i++] != ’\n’ && flag != 0);
buf[i]=’\0’;
if (strstr(buf,recvline) !=0)

write(out fd,recvline,SIG SIZE); J
}
close(log fd); J
close(out fd); J
return 0;

}

Figure 5: A Freeware Program for Web Log Analysis
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include the following. The learning algorithm makes a number of
system calls at program start up, which correspond to calls made
by the (dynamic) program loader such as /lib/ld-linux.so. In
addition, the need to allocate heap storage may lead to additional
system calls. These details have been abstracted away, and the ar-
gument relationships are represented in a human-readable form to
obtain Figure 4 from the EFSA learned by the above algorithm.

4. VERIFICATION
Verification is concerned with determining whether or not a model

M satisfies a security policyP . Formally, we need to check whether
behaviors captured by M is a subset of behaviors permitted by the
policy P — B[M ] ⊆ B[P ] where M,B and P were introduced
earlier. Noting that the policy automaton actually represents the
negation P of P , we simply need to determine if B[M ]∩B[P ] = φ.
Thus, our verification approach is to build the product automaton
M×P , which will accept the intersection of the behaviors accepted
by M and P . If there are feasible paths in this product automaton
that lead to final (i.e., violating) states of P , then the policy is vio-
lated and M × P is a representation of all such violations.

All common operations, such as computing the product of two
automata and checking it for reachability, have well-known solu-
tions in the case of FSA, but become complex in the case of EFSA
due to the presence of infinite domain variables. We begin by com-
puting the EFSA product in much the same way as an FSA product
construction. Specifically, the product automaton MP = M × P
is constructed as follows:

• The state variable set ofMP is the union of the state variables
ofM and P .

• The start state ofMP is a tuple (m0, p0), wherem0 and p0 are
the start states of M and P , respectively. Similarly, the final
state set is FMP ⊆ FM ×FP , where FM is the set of all states
inM and FP denotes the set of final states in P .

• Whenever there exists a transition from a state s to s′ in M on
event e with condition C1 and assignment A1, and a transition
from p to p′ in P on the same event e with condition C2 and
assignment A2, then (and only then) there is a transition from
(s, p) to (s′, p′) inMP on condition C1 ∧C2 with assignment
A1 ∪A2.

A transition in the product automaton is said to be enabled only
when the associated condition C1∧C2 is satisfiable. Given that our
EFSA is defined over infinite-domain variables representing strings
and integers, the problem of determining satisfiability of arbitrary
arithmetic constraints appearing as enabling conditions of transi-
tions is, in general, undecidable. We focus, therefore, on a tractable
subset of constraints over infinite-domain variables; specifically
equality (=) and disequality ( �=) relationships between the vari-
ables. The model checker relies on an underlying constraint pro-
cessing system to decide the satisfiability of these constraints. The
constraint processing system maintains a store of conjunctions of
constraints between the variables. A product transition is fired if
the corresponding enabling conditions are satisfiable in the exist-
ing store present in the constraint processing system. In this case,
the constraint store is updated by adding the enabling conditions.
Otherwise, the transition is considered infeasible.

As alluded before, EFSA are defined over infinite-domain vari-
ables. Hence, the model checker empowered with the constraint
solver, as described above, is incapable of inferring the satisfiabil-
ity of constraints in some cases, e.g. range (≥) constraints over
integer variables or prefix constraints over strings. Such situations
are handled conservatively as follows. If the arguments to the con-
straint are sufficiently defined then the constraint processing sys-
tem evaluates them. Otherwise it considers these “undecided” con-
straints as satisfiable and adds them to the existing constraint store.
This strategy results in the incompleteness of the constraint-based
model checker due to generation infeasible product transition se-
quences. However, in all the cases investigated so far, equality and
disequality constraints over infinite-domain variables are sufficient
to capture the desired behavior of the product of the policy and the
model.

Consider the example program and the corresponding model in
Figures 5 and 4 respectively. In order to verify whether the model
conforms to the policy (see Figure 2(c)) of no socket and write-to-
file operations, a product (Figure 6) of the model automaton and the
policy automaton is constructed. Two violating traces are obtained
in the model — (a) the transition from (m1, s1) to (m2, s2) in the
model consisting of socket(PF INET,...,sd) and (b) the tran-
sition sequence from (m1, s1) to state (m7, s2) due to the open
operation of a file in O WRONLY mode.



4.1 Conflict presentation
One important aspect of the verifier is to give a comprehensive

view of why/how a violation of the policy occurred. This informa-
tion is crucial for policy selection.

Owing to the size of the product (on the order of the size of the
model), presentation of the product “as is” does not provide a clear
and precise view of the violations in the model. The product au-
tomaton is hence presented to the user by projecting it onto the
policy automaton, because the root cause of policy violation (lead-
ing to a final state of the policy automaton) can be attributed to the
sequences of policy-specified actions that are present in the model.

Note that the product contains all violating paths in the model.
During projection, we combine common aspects of multiple vio-
lating paths. Frequently, this combination requires merging tran-
sitions that are associated with different conditions on event argu-
ments. For instance, open events corresponding to opening dif-
ferent files may all need to be combined. We use an approach
similar to the model extraction algorithm for doing this combi-
nation: If the number of different argument values is small, we
retain the set of possible values. If it exceeds a certain threshold,
then they are combined using an appropriate aggregation technique.
For instance, the file names /tmp/a1, ..., /tmp/a3, /etc/xyz,
/var/f1, /var/f2 may be combined into /tmp/a*, /etc/xyz,
/var/f1, /var/f2. Using this approach produces the following
summary of conflicts from Figure 6:

• open operation on file /tmp/logfile in write mode,
• socket operation involving the domain PF INET

The refinement for the first violation is relatively obvious — the
user can simply permit write access to files in /tmp/. For the sec-
ond violation, we relax the policy to permit network access, as long
as these accesses are completed before reading any sensitive files.
The list of sensitive files needs to be specified, but we can assume
that any file that the consumer does not consider to be “public” is
classified as sensitive. In particular, this means that the web log file
is considered sensitive. The new policy with these refinements is
shown in Figure 7.

The ability of the conflict presentation technique to summarize
the violations provides help to a user in identifying suitable poli-
cies. One approach that can provide additional assistance to a con-
sumer in policy selection is based on catalogs of acceptable poli-
cies. Given such a catalog, the verifier can search this catalog to
identify a policy that is compatible with a given piece of code. The
conflict summary can provide direction to this search, so that the
verifier does not have to consider all policies in the catalog.

5. ENFORCEMENT
Runtime monitoring consists of intercepting system calls, ob-

taining the argument values to these system calls, and matching
them against models of expected behavior of the untrusted applica-
tion. Recall that we enforce models (not policies), which are large
nondeterministic automata. To avoid having to simulate the non-
determinism, which can lead to high overheads, we simply use the
program counter value to determinize the transitions. Policy en-
forcement based on system call interception is a well-understood
topic [18, 33, 17], so we don’t describe it any further here.

If the application violates the behavior captured by the model,
the enforcement module aborts the program. When this happens,
there are only two possibilities:

• producer intentionally misrepresented the application behavior,
or

• the model does not capture all possible program behaviors. (This
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Figure 7: Refined Policy

can happen when models are constructed through runtime mon-
itoring, but the test cases used for these runs were not suffi-
ciently comprehensive.)

In the first case, termination is the right choice. In the second
case, it may or may not be the right thing, but since it is indistin-
guishable to the consumer from the first case, the only safe thing to
do is to abort the application.

While runtime aborts cause inconvenience, we point out that
safety is not violated, since the program is aborted before it vio-
lates a security policy. Moreover, either case is likely to be rare,
given (a) the predominance of benign software in the Internet, and
(b) that a consumer, in a single run, is not very likely to uncover
new behaviors unless the code producer did a very poor job of test-
ing his/her code.

Note that within the MCC framework, it is possible to enforce
policies, rather than models. However, since the model EFSA cap-
tures a subset of behaviors permitted by the policy EFSA, some
behaviors that would violate the model EFSA would go undetected
during policy enforcement. It is questionable whether a consumer
wants to allow such behaviors, which the producer, in some sense,
has identified as illegitimate. For instance, consider an untrusted
application that reads image files, and saves them back with a pre-
view image included in the file. A policy that allows execution of
this application needs to grant write-access to such a file. However,
it is possible that a third-party attacks this program and causes it
to simply delete the image file. In this case, previous experience
in applying such models in intrusion detection [32, 39] suggests
that it is very likely that such attacks will be prevented by model
enforcement, while it will be missed by policy enforcement.

A possible benefit of policy enforcement is that it may be sim-
pler than model enforcement. Even though model EFSA are much
larger than policy EFSA, they are deterministic, and hence can be
efficiently enforced. The enforcement algorithm is also simple, as
it simply needs to (a) keep track of the most recently encountered
value of every state variable, and (b) before making a state transi-
tion, perform the relationship checks associated with the transition.
Policy automata, although smaller, are nondeterministic. This fac-
tor requires them to potentially keep an unbounded number of pre-
vious values encountered for a state variable, and perform checks
with respect to each such value. Although we have not encountered
this worst case behavior in our previous work in intrusion preven-
tion [33, 4], the mere possibility shows that policy enforcement is
not necessarily simpler.

Another possible reason for favoring policy enforcement over
model enforcement is that the soundness of the approach will no
longer depend on the correctness of the verifier. However, since the
verifier is already very simple, we believe that the reduction in the



size of the trusted computing base achieved as a result of such a
choice is not compelling.

6. IMPLEMENTATION
In this section, we summarize the status of our implementation,

and describe the results of applying MCC to some common pro-
grams such as instant messengers, web log analyzers, and docu-
ment viewers. These programs range in size from a few thousand
lines to tens of thousands of lines of source code.

Security Policies. As mentioned previously, security policies are
specified in our BMSL language [4]. A compiler for this lan-
guage which produces EFSA from BMSL specifications has been
described in an earlier paper [33]. As shown in the policy exam-
ples discussed so far, policy automata tend to be very small (2 to 6
states).

Model generation. We have implemented model generation us-
ing execution monitoring. Our implementation learns system call
argument values as described in Section 3.2.2. Argument relation-
ship learning has been implemented for equality relationships for
arguments such as file descriptors, and prefix/suffix relationships
for strings such as pathnames. The sizes of the models, in terms of
number of states, transitions and relationships, are shown in Fig-
ure 8.

In terms of the time needed to learn the models — we first note
that model generation is an offline process, hence we have not
attempted to optimize it. Currently, the logging of system calls
is done using user-level system call interception, built with the
ptrace facility on Linux. The frequent context switches involved
in this approach, together with the need to fetch system call argu-
ment data, introduces significant overheads, which range from 40%
to 200%. However, since learning itself is an offline activity, this
overhead is quite acceptable. The logger and system call intercep-
tor are implemented in C and C++ and have a combined size of 9
KLOC.

Different applications tend to generate different volumes of sys-
tem calls. For instance, xpdf and gaim generate a large number
of system calls, while http-analyze generates much fewer calls
in each run. On the other hand, http-analyze is a batch process-
ing program, so it is much easier to develop a test suite that can
comprehensively test it. Other applications involve a high degree
of user interaction through a GUI, and hence their testing is not as
comprehensive. These two factors balance each other out, leading
to the fact that the length of training traces used for all programs
were in the range of 103 to 105 system calls.

The current implementation of model extraction is not optimized
for performance, since model extraction is an offline process. For
this reason, model extraction is relatively slow, taking of the order
of few minutes for traces of size of the order of 105 system calls.
The size of the learning algorithm implementation is about 6000
lines.

Verifier. The verifier is implemented in XSB [41] Prolog, a ver-
sion of Prolog that supports “memoization” of query results using
a technique called tabling. Tabling avoids redundant subcompu-
tations — instead, previously saved results of queries are reused.
This factor greatly simplifies the implementation of verification and
program analysis techniques, which involve so-called fixpoint com-
putation. The analysis can be specified using a set of recursive
rules, leaving the tabling technique to automatically compute the
fixpoint. This facility enables the verifier to be implemented using
about 300 lines of Prolog code. This code implements the automata

product construction, as well as the constraint-handling operations
described in Section 4. The constraint processing system interprets
equality constraints using Prolog’s variable unification mechanism
and handles disequality constraints by storing them in the form of
a list.

We have verified the application models described above using
policies similar to the ones described in Section 2. Here, we present
a brief description of the policies corresponding to each of the ap-
plications. Figure 8 tabulates the results of verification.

• PDF viewer application. We use conventional sandboxing poli-
cies on the PDF viewer application. Such a policy prevents the
application from creating any new files (except in the /tmp di-
rectory), disallows it from overwriting any existing files and
restricts network connections and prevents it from executing
other applications. No violations were reported for these poli-
cies. Thus, for applications such as document viewers, it ap-
pears that MCC is as simple to use as sandboxing approaches.

• http-analyze application. The http-analyze application [22] is
similar to the log analyzer application that was illustrated as an
example. We generated the model of the program by learning
its behavior and verified it against refined policy that is repre-
sented in Figure 7, which basically disallows the application
from a) performing network operations after reading sensitive
files and b) writing to non-temporary directories. The second
part of the policy is not violated by the model. The first policy is
violated, since the application creates a file called index.html
in the current directory, and two subdirectories called btn and
www, and several tens of files in each of these subdirectories.
The model extraction process summarizes this information, so
that the following violations are reported by the verifier:

– attempt to create directories: btn and www
– attempt to write files: index.html, btn/* and www/*

The policy is refined to permit these accesses, and then the ap-
plication is run successfully.

• Gnu Instant messaging application. The model for Gaim appli-
cation is verified against a “no file access” policy. The policy is
violated by the model. Projecting the product on the policy we
obtain an error/violating trace in the model — an open opera-
tion is performed on .gaim (read mode) and .gaimrc (write
mode) files in the user’s home directory. The policy is relaxed
by restricting file access of the user’s home directory to only
.gaim and .gaimrc. The refined policy is not violated by the
model.

All these experiments were conducted on XSB version 2.5 and
RedHat Linux 7.2 running on 1.7GHz Xeon with 2GB of memory.
Figure 8 shows that verification takes only milliseconds, and has
low memory requirements, thus making it practical.

Model enforcement. The enforcement system uses an in-kernel
module to perform system call interposition. Whenever the appli-
cation performs a system call, the enforcement module makes the
transition on the model automaton to keep track of the system state.
Figure 8 shows that the runtime overheads for model enforcement
are moderate— 2% to 30%. Much of this overhead arises from the
stalk walk required to obtain the program location from where sys-
tem calls are made. Often, this requires 10 or more stack frames
to be traversed. Our current stack traversal algorithm is very con-
servative, and cross-checks every return address found on the stack
with the calling instruction. Moreover, no systematic performance
tuning has been attempted yet. These factors lead to the moderate
overhead. With improved implementation of the stack walk and



Application Program Model Size Enforcement Overhead Verification
Size (KB) States Transitions Relationships Interception Total Time (msec.) Space (MB)

only

xpdf 1.0 906 125 455 305 2% 30% 1.00 0.5
gaim 0.53 3173 283 937 432 2% 21% 1.80 0.7

http-analyze
2.4.1.3 333 158 391 247 0% 2.4% 0.70 0.4

Figure 8: Results on Generation, Verification and Enforcement of Models

performance tuning, these overheads may be cut down by a factor
of two or more.

The variation in overheads across applications results from the
variations in the frequencies of system calls made by these applica-
tions. The http-analyze application performs very few system calls,
whereas xpdf and gaim make a large number of system calls.

6.1 Discussion
We make the following remarks based on our implementation

experience so far.

6.1.1 Usability and Practicality
As illustrated with the xpdf application, for applications that

are amenable to sandboxing types of policies, MCC seems to be
as simple to use as execution-monitoring approaches. Indeed, the
added expressive power of MCC policies can be expected to allow
more applications to execute without raising violations during ei-
ther the verification or the runtime stage. For instance, consider a
policy that permits an untrusted application to create new directo-
ries, and to overwrite files in the directory created by it. Clearly,
such a policy requires the use of state variables to remember the
name of directories created by the untrusted application, and hence
can be expressed as an EFSA, but not using the policy languages
permitted in previous execution monitoring-based approaches.

The http-analyze example demonstrates the effectiveness of
MCC in minimizing policy violation alerts. A naive execution
monitoring-based approach would have resulted in close to 100
runtime prompts, corresponding to each file created by this appli-
cation. Even a more intelligent system, which requests write access
for entire directories after a number of violations (say, 3) have been
reported for files in that directory, would result in 7 user alerts. It is
our experience that users “give up” after perhaps 3 such prompts,
and either discard the code, or click “yes to all.”

While MCC improves over previous techniques in offering some
guidance for policy refinement, there is much room for improve-
ment. One possibility that we plan to consider in the future is that
of having the verifier automatically search through a hierarchy of
safety policies to find one that is suitable for a particular appli-
cation. In addition, we need to improve the understandability of
violations of security policies that involve nontrivial temporal rela-
tionships.

These comments on the usability of MCC, together with per-
formance results reported above, validate our claim that MCC is
indeed practical.

6.1.2 System complexity
System complexity is an important consideration in security, as

complexity leads to errors that can impact security. A careful ex-
amination of MCC shows that although it is realized using several
components, including a policy language compiler, model genera-
tor, verifier and model enforcer, each of these components is rel-
atively simple. Where there was a choice between simplicity and

generality, we have usually favored simplicity, in order that we be
able to build a reasonably robust system with modest implementa-
tion resources. Even the verifier, which is often considered a com-
plex piece of software, is very simple in MCC — only 300 lines of
code, written in a declarative language. The compiler is of moder-
ate size (15 KLOC), but much of this complexity arises from the
fact that BMSL is designed to be a general purpose event moni-
toring language that is capable of monitoring diverse events, and
complex data types such as network packet data. If one were to
separate the code that would be needed for EFSA policies of the
kind described in this paper, then it would perhaps be half the cur-
rent size. The model enforcer is also simple, consisting of only
2500 lines of code. The model extractor, which consists of the im-
plementation of the learning algorithm, the logger and the system
call interceptor, is about 15000 lines of code. Thus the total system
size is of the order of 32 KLOC.

Not all of the MCC components are critical for security. In par-
ticular, the correctness of the model extractor does not impact the
safety of MCC. If the implementation of other components is tight-
ened up to eliminate features unneeded for MCC, then the size of
security-critical components of MCC can be brought down to be-
low 10 KLOC. On the other hand, it should be noted that safety
depends on many non-MCC components, including the underly-
ing OS, the gcc compiler and related tools, and the XSB system.
All these components must be considered part of the trusted com-
puting base, in addition to the BMSL compiler, verifier and model
enforcer.

6.1.3 Standardization
In order to enable the widespread deployment of MCC or a sim-

ilar approach, a significant amount of work in standardization will
be required in addition to technical solutions. Currently, the policy
language uses events that are closely tied to an operating system.
Moreover, several choices are made regarding which system call ar-
guments are important, and what relationships involving them need
to be preserved in a model. These need to be standardized as well,
if we are to achieve interoperability and compatibility across dif-
ferent OSes and/or users. Finally, note that many policies need to
be parameterized. For instance, we need to express the fact that
a certain application may open a file in the consumer’s home di-
rectory. Developing a uniform way to identify such parameters,
and naming them is another important aspect of standardization.
(Once such parameters are standardized, it is simple to incorporate
them into MCC — the logging component of the model generator
needs to ensure that system call arguments such as filenames are
expressed in a parameterized form. The policies also need to be
stated in a parameterized form.)

6.2 Integration into Existing Systems
It is our objective that typical users should not be required to

change their ways in order to benefit from MCC. To accomplish
this objective, we integrate MCC into the tools that are used in the



process of explicit installation, implicit downloading, or execution
of untrusted code.
Explicit installation of code. We have incorporated the MCC ap-
proach into a tool called RPMshield [37], an enhancement of the
RedHat Package Manager (RPM) software installation tool. This
tool applies the MCC approach to the installation phase, wherein it
is ensured that the installation of a package does not clobber files
belonging to other packages, and that the installation scripts ob-
serve consumer-specified policies. Some of the concrete problems
addressed by this enhancement include: clobbering of manually
edited configuration files during package upgrades, and execution
of arbitrary pre- and post-installation scripts. In the case of un-
trusted packages, these scripts can cause arbitrary damage, whereas
with RPMshield, they cannot.

During installation, an untrusted application is associated with
a set of allowable policies. In addition, it is flagged to indicate
whether these policies should be silently enforced (which would
be the case if the policy selection took place during installation) or
whether the MCC user interface is to be invoked for policy selection
during each run.
Implicitly downloaded code. The two principal mechanisms for
implicit code downloading are email attachments, and web con-
tent. We integrate the MCC approach into these environments by
defining a new content type, application-mcc, corresponding
to model-carrying code. The MCC policy selection user-interface
is then invoked for handling instances of such content, ensuring a
smooth integration with diverse email readers and browsers.
Execution of untrusted code. The above installation and/or down-
loading process ensures that untrusted code will always be executed
under MCC control. In particular, execution occurs within the se-
cure enforcement environment, and with or without the support of
the policy selection user-interface.
Untrusted code without a model. To facilitate the adoption of
MCC, our user interface supports the execution of code without ac-
companying models. In such cases, a consumer-specified policy is
silently enforced on the application. This may not be convenient
or suitable for all applications, but it certainly works well for ap-
plications such as document handlers. Alternatively, third parties
could generate models for such programs and these models could
be downloaded and used for policy selection.

7. CONCLUSION
In this paper, we have presented model-carrying code, a promis-

ing solution to the problem of running untrusted code. Unlike pre-
vious approaches that were focused mainly on malicious code con-
tainment, MCC makes no assumptions on the inherent risks posed
by untrusted code. It simply provides tools that consumers can use
in order to make informed decisions about the risks that they are
willing to tolerate so as to enjoy the functionality provided by un-
trusted code.

We demonstrated that MCC is practical by showing that sev-
eral small to moderate size programs can be successfully handled.
MCC does not require users to switch to a new programming lan-
guage, nor does it require them to change their ways in terms of
how they download or run untrusted code. Instead, MCC is incor-
porated in a transparent fashion into tools that serve as conduits for
untrusted code, including software installers, email handlers, and
browsers.

MCC achieves a practical balance between the security-related
obligations of the producer and the consumer, thereby avoiding
placment of an undue burden on either party. The producer can gen-
erate a model for an application and supply it to several consumers
with different security concerns. Similarly, consumers can develop

and enforce policies that address their security concerns without
having a priori knowledge about security needs of diverse appli-
cations. Thus, MCC provides a scalable framework for permitting
the networked distribution of end-user software applications while
addressing security concerns.

The MCC approach is complementary to existing approaches
such as PCC and code-signing, and can be gainfully combined with
them. For instance, a code producer may provide a proof of model
safety with the code. In this case, the consumer can statically check
the correctness of this proof; runtime enforcement of models is
unnecessary. Similarly, digital signatures may be combined with
MCC by having the producers digitally sign their models to indi-
cate that they certify the safety of the model. If a consumer trusts
this representation by the producer, then they can skip the enforce-
ment step. Since model safety does not rely on runtime enforce-
ment in both cases, there is a scope for expanding the classes of
properties that can be supported by MCC to include liveness and
information flow. Moreover, runtime aborts can be avoided.
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